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Abstract

An account of grammatical acquisition is developed within the parameter-
setting framework applied to a generalized categorial grammar (GCG). The
GCG is embedded in a default inheritance network yielding a natural partial
ordering (reflecting generality) of parameters which determines a partial order
for parameter setting. Computational simulation shows that several resulting
acquisition procedures are effective on a grammar / language set expressing
major typological distinctions based on constituent order, and defining 70 dis-
tinct full languages and over 200 subset languages. The effects on acquisition
of maturational working memory limitations, trigger presentation sequences,
parameter update criteria, and differing initial settings are explored via com-
putational simulation.

Computational simulations of populations of language learners / users in-
stantiating the model show: 1) that variant acquisition procedures with differ-
ing constraints and biases exert differing selective pressures on the evolution
of language; 2) acquisition procedures will evolve towards more efficient vari-
ants in the environment of adaptation. The reciprocal evolution of language
acquisition procedures and of language creates a genuinely coevolutionary dy-
namic, despite the relative speed of linguistic selection for language variants
compared to natural selection for variant language acquisition procedures.’
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1 Theoretical Background

It is widely accepted that language acquisition is guided by an innate language
acquisition procedure and a partial innate specification of the form of language.
Language acquisition by children is a near-universal feat, where (partial) failure
appears to correlate more with genetic deficits (e.g. Gopnik, 1994) or with an al-
most complete lack of linguistic input during the critical period (e.g. Curtiss, 1988),
than with measures of general intelligence (e.g. Smith and Tsimpli, 1991) or the
quality or informativeness of the learning environment (e.g. Bickerton, 1981; Kegl
and Iwata, 1989; Ochs and Sheiffelin, 1995).2 There is considerable psycholinguistic
evidence that children have strong biases in language acquisition which shape their
linguistic development, the nature of their errors, and the kind of languages they
are predisposed to learn. Often these biases are partially incorrect as generaliza-
tions about the nature of human languages. For example, Wanner and Gleitman
(1982:12f) argue that children are predisposed to learn lexical compositional systems
in which atomic elements of meaning are mapped to individual words. This leads
to errors where languages, for example, mark negation morphologically. Similarly,
Clark (1993) argues for a principle of contrast in lexical acquisition, suggesting that
children hypothesize novel meanings for novel words, ignoring, at least initially, the
hypothesis that a new word may be synonymous with a known one. How do some-
times inaccurate biases of this kind arise and how pervasive are they in language
acquisition?

1.1 Grammatical Acquisition

Grammatical acquisition proceeds on the basis of a partial genotypic specification
of (universal) grammar (UG) complemented with a learning procedure enabling
the child to complete this specification appropriately on exposure to finite positive
samples from a given language. The parameter setting framework of Chomsky
(1981) claims that learning involves fixing the values of a finite set of finite-valued
parameters to select a single fully-specified grammar from within the space defined
by the genotypic specification of UG. Formal models of parameter setting have been
developed for small fragments, but even the search spaces defined by these models
contain local maxima and subset-superset relations which may cause a learner to
converge to an incorrect grammar (Clark, 1992; Gibson and Wexler, 1994; Niyogi
and Berwick, 1996; Wexler and Manzini, 1987).

Gibson and Wexler (1994) formalize the concept of a trigger (e.g. Lightfoot,
1992:13f) as a simple (unembedded or degree-0) sentence of primary linguistic data
which signals the value of some parameter and can serve to guide the learner to
the target grammar. The notion of a trigger is a refinement of that of primary
linguistic data, which, through context of use, unambiguously signals a particular
surface form (SF) to logical form (LF) pairing (e.g. Wexler and Culicover, 1980).
Thus the task of the learner faced with a trigger, or SF-LF pairing, not expressible
given the current grammar, is to update a parameter such that the trigger can be
parsed appropriately. Frank and Kapur (1996) demonstrate that the existence of
locking sequences of such triggers, guaranteeing convergence to a target grammar,
depends on the nature of the parameters, on the specific acquisition procedure, and
on the starting point for learning.

Chomsky (1981:7f) argued that at least some parameters probably have an ini-
tially unmarked or default value which will be retained by the learner unless incom-
patible with input. That is, that the learner is biased towards certain settings of
some parameters. Unmarked, default values have been proposed as a mechanism

2See, e.g., Pinker (1994) or Aitchison (1996) for recent positive summaries and discussion of
this evidence. See Sampson (1989) for a dissenting view.



for avoiding premature acquisition of a superset grammar (Hyams, 1986; Wexler
and Manzini, 1987; Lightfoot, 1992). However, formal work on parameter setting
has tended to assume arbitrary initial configurations of parameters in evaluating
learnability, perhaps because initial unmarked settings have only been proposed
and justified for a few putative parameters. In addition, there have been no propos-
als concerning the grammatical representation and formalization of the distinction
between initially unset and initially default parameters. Chomsky (1981:8) also
proposed that the same mechanism might well be responsible for acquisition of the
periphery of marked idiosyncratic constructions for which positive evidence was
provided by a given language community. However, there has been little attempt
to provide a formal model of grammatical representation and acquisition capable of
incorporating these insights.

Pullum (1983) criticizes the parameter setting framework because it predicts
that the space of possible grammars, and thus languages, is vast, though finite
(20 independent binary parameters yields 220 or 1048,576 grammars, whilst 30
such parameters yields 1,073,741,824 distinct grammars), and because few if any
psychologically feasible, as opposed to merely computationally tractable, acquisition
procedures have been proposed within this framework. For example, brute force
search through the space of distinct grammars will require time proportional to their
number (e.g. Clark, 1992), whilst the number of positive samples of the language
and hence amount of time required for convergence to a target grammar can be
arbitrarily long depending on the distribution of trigger types in the language (e.g.
Niyogi and Berwick, 1996).

The model presented in section 2 addresses these issues via a modified parameter
setting procedure, which can learn more complex grammars than those investigated
by Gibson and Wexler, and which is more directed and therefore less psychologically
implausible than the Markovian ‘memoryless’ procedures of the type investigated by
Niyogi and Berwick (e.g. Brent, 1996). The modified procedure is based on a partial
ordering on the updating of parameter settings, defining the category set and rule
schemata available in a categorial grammar. The partial ordering is obtained by use
of a default inheritance network as the grammatical representation language. The
generalized categorial grammar (GCG) framework supports a more articulated ac-
count of UG than is typically deployed in recent formal work on parameter setting,
enabling a wider space of grammars to be explored, and a richer notion of param-
eter updating to emerge. Parameters are set in (partial) order of their generality
in defining the space of possible grammatical categories, ensuring that grammatical
hypotheses remain maximally specific, though further modifiable due to the defea-
sibility of their consequences. The grammatical representation language provides a
formal means for distinguishing unset, default and absolute specification, and thus
for distinguishing unset or (un)marked parameters from principles. Variants of this
acquisition procedure can be defined based on the criterion adopted for retaining
a new parameter setting, on the number of new parameter settings per trigger, on
the existence of (maturational) working memory limits during learning, and on the
initial configuration of the parameter set.

For Gibson and Wexler (1994), following Wexler and Culicover (1980), the cri-
terion for retaining a new parameter setting is successful recovery of a complete
and contextually-appropriate LF for the input; for Dresher and Kaye (1990), it is
recognition of an unambiguous structural cue for that new setting. The cue-based
approach to parameter setting of Dresher and Kaye results in a more incremental
acquisition procedure which can be less sensitive to trigger presentation order. On
the other hand, allowing more than one parameter per trigger sentence to be up-
dated may counteract this sensitivity without changing fundamental properties of
the acquisition procedure (Bertolo, 1995). In addition, as the relationship between
parameters and a specific account of UG becomes more articulated, the complete



independence of parameters becomes increasingly questionable (e.g. Dresher and
Kaye, 1990) and consequently it is difficult to maintain both recovery of a full LF as
the success criterion and the restriction to updating a single parameter per trigger.
Some of the consequences of such variants within the parameter setting framework
are explored experimentally in section 4.

Elman (1993) argues, following Newport (1990), that language learning ‘starts
small’; restricted by working memory limitations which block the learner from seeing
complex triggering data until later in the learning process. It is known that working
memory capacity increases through childhood (e.g. Baddeley, 1976, 1992) and that
this correlates with language comprehension ability (e.g. King and Just, 1991;
Gathercole and Baddeley, 1993). A maturing working memory may serve as a filter
on trigger input and ‘internally’ impose an order on the complexity of triggering
data and thus on parameter setting. The language acquisition device (LAD) must
incorporate a UG, a parameter setting procedure, and a parser capable of applying
the current grammar to primary linguistic data (e.g. Berwick, 1985). The parser
will require a working memory to store (sub)analyses and the amount of memory
required will vary for different constructions (and grammars). Restrictions on the
working memory resources available to the parser can be used to distinguish parse
failure due to an incorrect grammar from parse failure due to overloading of working
memory. The empirical consequences of internal filtering for a class of parameter
setting learners is explored experimentally in sections 4.1 and 6.

The starting point for a parameter setting procedure is defined by the initial
unset state or default setting of each parameter. The framework developed here is
capable of expressing any such start state within the grammatical space explored.
The learnability of each grammar may be affected by this starting point (e.g. Gibson
and Wexler, 1994), but linguists have often argued for default initial values for spe-
cific parameters. Bickerton (1984), in particular, argues that the abrupt transition
from pidgin to creole suggests that children are endowed genetically with initial pa-
rameter settings specifying the stereotypical core creole grammar. The consequences
of several starting points for the acquisition procedure are explored experimentally
in sections 4.1 and 7, and it is argued on evolutionary grounds that the LAD is
probably equipped with a highly-informative and largely accurate starting point for
acquisition with respect to the languages sampled during the period of adaptation.
That is, many parameters will have default, unmarked values appropriate to (some
of) these ancestral languages.

1.2 Linguistic Evolution

The use of evolutionary terms and ideas in linguistic theory is not new?® but, ad-
vances in the understanding of dynamic systems and the availability of compu-
tational simulation techniques now make it possible to move beyond loose use of
terminology, primarily as a metaphor, and study language directly from an evolu-
tionary perspective. There are two ways in which evolutionary theory might bear on
language. Firstly, it is possible, indeed highly probable, that the LAD is adaptive
and has been selected for via biological evolution in the hominid line (e.g. Pinker
and Bloom, 1990; Newmeyer, 1991, 1992). But secondly, language itself can be
viewed as a dynamic system which adapts to its niche — of human language learners
and users (e.g. Cziko, 1995; Hurford, 1987; 1998; Keller, 1994). In this second view,

3Miiller, Schleicher and other 19th century linguists speculated that languages evolved accord-
ing to Darwinian theory, and Darwin (1871) endorsed the idea, quoting with approval from Miiller:
‘A struggle for life is constantly going on amongst the words and grammatical forms in each lan-
guage. The better, the shorter, the easier forms are constantly gaining the upper hand, and they
owe their success to their own inherent virtue.” See Harris and Taylor (1997:ch14) and McMahon
(1994:ch12) for more discussion of the relationship between Darwinian and linguistic theory, and
Keller (1994:46f) for a critical discussion of Miiller and Schleicher’s theories of language.



it is language which is evolving on a historical timescale, and the primary source of
linguistic selection is the language acquisition ‘bottleneck’ through which success-
ful grammatical forms must pass repeatedly with each generation of new language
learners.

Under this second view, the concepts of linguistic evolution and selection are
being used in their technical ‘universal Darwinist’ sense of (random) variation,
adaptive selection and differential inheritance applied to any dynamic system (e.g.
Dawkins, 1983; Cziko, 1995). To study linguistic evolution, it is necessary to move
from the study of individual (idealized) language learners and users, endowed with
a LAD and acquiring an idiolect, to the study of populations of such generative
language learners and users, parsing, learning and generating a set of idiolects con-
stituting the language of a community. Once this step is taken, then the dynamic
nature of language emerges more or less inevitably. Occasional misconvergences on
the part of language users can introduce variation into a previously homogeneous
linguistic environment, fluctuations in the proportion of learners to adults in the
population can skew the distribution of primary linguistic data significantly enough
to affect grammatical acquisition, and so forth. Once such variation is introduced,
then properties of the acquisition procedure become critical in determining which
grammatical forms will be differentially selected for and maintained in the language,
with language acquisition across the generations of users as the the primary form
of linguistic inheritance.

Several researchers have recently proposed that language can be treated as a dy-
namic or (complex) adaptive system in order to formally model aspects of language
change (e.g. Niyogi and Berwick, 1997a,b) or account for typological, statistical
and implicational universals (e.g. Kirby, 1996, 1997, 1998). In generative work
on diachronic syntax, language change is primarily located in parameter resetting
(reanalysis) during language acquisition (e.g. Lightfoot, 1979, 1992, 1997; Clark
and Roberts, 1993; Kroch and Taylor, 1997). Differential learnability of gram-
matical systems, on the basis of learners’ exposure to triggering data from varying
grammatical sources, causes change. This can be modelled as an evolutionary pro-
cess in which variant source grammars provide competing constructions which are
differentially-selected by the next generation of speakers as a consequence of proper-
ties of the LAD. Modelling language as an adaptive system which is the product of a
changing population of language learners and users may shed light on the conditions
under which parameters will be reset.

As Niyogi and Berwick (1997a,b) argue, the behaviour of all but the simplest dy-
namic systems is often unintuitive; whilst analytic proofs of the behaviour of classes
of such systems are only possible when the number of variables involved is severely
limited. For these reasons, a computational simulation methodology is utilized here,
which allows more complex models to be studied experimentally. It is important
that simulations strike the right balance between idealization and ecological va-
lidity, ignoring irrelevant complexities, but modelling potentially relevant factors,
and making critical assumptions explicit. A simulation of linguistic evolution, at
a minimum, needs to provide a source of linguistic variants on which selection can
work and a realistic model of language acquisition which will form the basis of both
the inheritance and selection amongst those variants. But before, developing such
a model we need to consider the relationship between linguistic evolution and the
biological evolution of the LAD.

1.3 Coevolution and Genetic Assimilation

Pinker and Bloom (1990) argue for an adaptationist account of the evolution of the
language acquisition device (LAD) suggesting that the domain-specific linguistic
(grammatical) knowledge required to support reliable language learning was geneti-



cally assimilated via natural selection for more successful language learners since the
emergence of structured language.* Genetic assimilation is a neo-Darwinian (and
not Lamarckian) mechanism supporting apparent ‘inheritance of acquired charac-
teristics’ (e.g. Waddington, 1942, 1975). The fundamental insights are that: 1)
plasticity in the relationship between phenotype and genotype is under genetic con-
trol, 2) novel environments create selection pressures which favour organisms with
the plasticity to allow within-lifetime developmental adaptations to the new environ-
ment, 3) natural selection will function to ‘canalize’ these developmental adaptations
by favouring genotypic variants in which the appropriate trait develops reliably on
the basis of minimal environmental stimulus, providing that the environment, and
consequent selection pressure, remains constant over enough genemtions.5

As an example of genetic assimilation, Durham (1991) discusses in detail the case
of widespread, though by no means universal, lactose tolerance in adult humans.
Many of us, uniquely amongst mammals, continue to be able to easily digest milk
after weaning. In many parts of the world the growth of animal husbandry created
a new and reliable source of nutrition — milk. Thus, individuals more able to exploit
this resource for longer periods of their lifetime were selected for. Lactose tolerance
has been genetically assimilated by the great majority in populations where milk has
been reliably available over many generations. Although it is not possible to relate
lactose tolerance directly to specific genetic differences (yet), Durham demonstrates
convincingly that the incidence of intolerance correlates, in a manner compatible
with a genetic explanation, with a fairly recent introduction of diary products and
with warm climates, where lack of Vitamin D is less potentially problematic.®

Waddington, himself, suggested that genetic assimilation provided a possible
mechanism for the gradual evolution of a LAD: ‘If there were selection for the abil-
ity to use language, then there would be selection for the capacity to acquire the use
of language, in an interaction with a language-using environment; and the result of
selection for epigenetic responses can be, as we have seen, a gradual accumulation
of so many genes with effects tending in this direction that the character gradually
becomes genetically assimilated.” (1975:305f). Pinker and Bloom (1990) briefly
make the same suggestion, citing Hinton and Nowlan’s (1987) computational sim-
ulation showing genetic assimilation of initial node settings facilitating learning in
a population of neural networks.

One complication for this account of the evolution of the LAD is that it does

4This aspect of their argument, at least, is distinct from the question of whether the LAD
originated via a biological saltation or gradually. Berwick (1997) argues that the Merge operation
of the Minimalist Program (e.g. Chomsky, 1991) might have been exapted via genetic drift.
This specific proposal is quite compatible with the framework presented here, in which function-
argument application plays a similarly central role to Merge. Indeed, as Steedman (1996:14f)
notes, the deterministic mapping via categorial rules of application, composition, and so forth from
surface form to predicate-argument structure strengthens the case for an evolutionary pathway in
terms of the development of such rules of ‘realization’ for pre-existing conceptual structures (see
e.g. Bickerton, 1998; Worden, 1998). However, the question of the origin of the LAD, as opposed
to its subsequent evolution and maintenance, is not addressed further in this paper.

5Waddington’s work on genetic assimilation is a neo-Darwinian refinement of an idea indepen-
dently discovered by Baldwin, Lloyd Morgan and Osborne in 1896, and often referred to as the
Baldwin Effect (see Richards, 1987 for a detailed history). Waddington refined the idea by empha-
sizing the role of canalization and the importance of genetic control of ontogenetic development
— his ‘epigenetic theory of evolution’. He also undertook experiments with Drosphila subobscura
which directly demonstrated modification of genomes via artificial environmental changes (see
Jablonka and Lamb, 1995:31f for a detailed and accessible description of these experiments).

SEvolutionary biologists accept the possibility of genetic assimilation (e.g. Maynard Smith,
1987, 1993:319f; Rose, 1997:217f), however, some (e.g. Dawkins, 1982:284) regard it as a ‘hypo-
thetical’ mechanism because, though it has been demonstrated experimentally, it has not been
conclusively shown to occur naturally. It is extremely difficult to prove a case of natural, adap-
tive genetic assimilation. Nevertheless, the developmental view of evolution, which Waddington
pioneered, is gaining ground as more is understood about the relationship between genes and
environment in morphogenesis (e.g. Jablonka and Lamb, 1995).



not explain why genetic assimilation should not have continued until the point
where a fully-specified grammar had been assimilated, and grammatical learning
became redundant. Waddington (1975:307) remarks: ‘Evolution is quite capable of
performing such a feat... But in the case of language, there is certainly little reason
to see why it would have been advantageous to press the matter further. If a child
which had never met a language-user developed the ability to talk, who after all
would it talk to?” Nevertheless, the propensity to use a fully-specified grammar,
given minimal triggering input, would simplify the language acquisition problem
to one of vocabulary acquisition. Pinker and Bloom (1990), following Hinton and
Nowlan (1987), argue that selection pressure to set the remaining initial nodes in
Hinton and Nowlan’s neural networks is weak once networks have evolved to learn
reliably. However, Harvey (1993) demonstrates that this is an artifact of Hinton and
Nowlan’s simulation design — later more effective networks almost invariably evolve,
without mutation, from a single ancestor, causing ‘premature’ (and artifactual)
fixation of some unset nodes, and thus preventing the population from evolving
further. As long as there is selection pressure for a fully-developed capacity, we
would expect no learning, and thus no delay in acquisition of the trait, to be the
optimal solution.”

Deacon (1997:102f,327f) rejects any account of the evolution of a LAD via ge-
netic assimilation, on the basis that genetic assimilation requires an unchanging
environment to create the sustained selection pressure over the many generations
required for genotypic adaptation. Pinker and Bloom (1990) simply assume that
linguistic universals are evidence of enough constancy in the environment to al-
low genetic assimilation. However, once we view language itself as an adaptive
system, this assumption, that universals are unambiguous evidence of genetic as-
similation of linguistic knowledge into a LAD, is no longer necessarily valid. Deacon
(1997:116f) instead argues for the contrary position that all linguistic ‘universalls]...
emerged spontaneously and independently in each evolving language, in response
to universal biases in the selection processes affecting language transmission. They
are convergent features of language evolution in the same ways as dorsal fins of
sharks, ichthyosaurs, and dolphins are independent convergent adaptations of ac-
quatic species.” He suggests, in particular, that languages have evolved to be easily
learnable by an acquisition procedure which ‘starts small’, following Elman (1993)
discussed in section 1.1, with a limited working memory only capable of ‘seeing’
local grammatical dependencies. Furthermore, Deacon (1997:328f) argues that the
surface grammatical organization of languages changes with such speed relative to
genetic evolution that there could not have been consistent enough selection pres-
sure for genetic assimilation.

Deacon’s position can be criticized on three levels. Firstly, it is unclear that
he recognizes the import of linguistic learnability arguments and the relevance of
abstract universals (without clear ‘surface’ effects). For example, the language ac-
quisition procedure presented below can parse and learn grammatical constructions
involving cross-serial grammatical dependencies, such as those exemplified in the
formal language a™b™c™ (where n > 1), Swiss German syntax and Bambara mor-
phology (e.g. Shieber, 1985; Gazdar 1988), but not constructions involving the
MIX or Bach language variant in which any ordering of equal numbers of the as,
bs and cs is grammatical, creating arbitrarily intersecting dependencies. Whether a
language exhibits cross-serial or arbitrarily intersecting dependencies is an appar-
ently rather abstract feature which does not fit well into traditional more ‘surfacy’
characterizations of languages as, say, inflecting, agglutinating or isolating, or head-

7 Ackley and Littman (1991) and Cecconi et al. (1996) describe unrelated simulations which, un-
like Hinton and Nowlan, distinguish phenotype and genotype, do not make use of a fixed externally-
defined fitness function, and do model learning cost — in these simulations learning is eventually
entirely displaced, given a constant environment, as expected.



initial / final, and so forth. Nevertheless, this has profound consequences for the
kind of rule system capable of expressing the mapping from SF to LF. Not least,
that a formal proof of learnability has been found for grammatical frameworks ca-
pable of expressing cross-serial dependencies (Joshi et al., 1991), but not for those
able to express arbitrarily intersecting dependencies. The genetic assimilation of a
language-specific rule system (the UG component of the LAD) remains a theoret-
ical possibility, even if the emergence of such abstract universals can be traced to
non-domain-specific factors, such as working memory limitations (see also Kirby,
1998).

Secondly, Deacon relies heavily on the ‘starting small’ hypothesis and Elman’s
(1993) experiments training recurrent neural networks (RNN) to approximate recog-
nition of context-free languages. Whilst these experiments demonstrate a clear
requirement for initially training on short sequences containing local grammatical
dependencies, it is unclear what consequences this has for grammatical acquisition
by human learners. Elman’s RNN models do not have the expressive power to en-
code SF-LF mappings and, therefore, to underpin a model of language generation
and interpretation. It is not, a priori obvious that when we move to consider models
with this capacity, and their associated acquisition procedures, that a similar effect
will be observed. In fact, though the experiments reported in sections 4.1 and 7 do
show that the assumption of maturational memory limitations during language ac-
quisition does affect predictions concerning the differential learnability of languages
in the framework developed here, they do not show any effect on the learnability of
languages per se.

Thirdly, in recent years, the increased use of mathematical tools and compu-
tational simulation has demonstrated the probability of extensive coevolutionary
interactions across species, such as predator-prey interactions, competitive and be-
nign host-parasite interactions, plant-insect interactions, and so forth (e.g. Fu-
tuyma and Slatkin, 1983; Kauffman, 1993:242f; Maynard Smith, 1998:285f). Most
of these interactions involve species evolving at different rates, as the lifespan of the
parasite is usually far shorter than that of the host. Though Waddington’s neo-
Darwinian mechanism of genetic assimilation remains the basis for (co)evolution
in response to environmental change, this work suggests that relative speed alone
cannot conclusively be used to reject the possibility of genetic assimilation in re-
sponse to pressure from an evolving linguistic environment. Interestingly, though
Deacon (1997:112-13) draws the analogy between language and symbiotic bacteria
(for example, those found in the human gut which aid digestion) and subtitles his
book ‘co-evolution of language and brain’, he does not explicitly discuss the recent
literature on coevolution, or whether this might warrant reconsideration of how
environmental changes affect genetic assimilation. The speed at which linguistic
changes can diffuse through a population will be far faster than that at which ge-
netic change can do so. However, there is clearly a speed limit to this change within
a successfully communicating population, and that speed limit means that only
a small part of the space of possible grammars may be sampled over the period
required for biological evolution. The experiments reported in section 7 suggest
this can lead to a constant enough selection pressure capable of supporting genetic
assimilation of a LAD. However, the fact of linguistic change provides a natural
barrier to total genetic assimilation of a fully-specified grammar.

The simulation models both natural selection for variant language acquisition
procedures and linguistic selection for languages. Therefore, it is possible to both
explore what kind of acquisition procedure might evolve and what effects different
acquisition procedures might have on the grammatical systems which evolve, given
varying assumptions about the role of memory limitations in learning, the adaptive
advantage of language to language users, and so forth (Briscoe, 1997, 1998a,b). The
simulation can be set up to model either a neutral, random relationship or benign,



symbiotic relationship between languages and their potential users. That is, one in
which the ability to communicate via language either confers no selective advantage
(or disadvantage) or one which confers some (unspecified) selective advantage to its
users. Additionally, in some experiments, the ability to communicate using a more
learnable, expressive or interpretable variant language can confer greater relative
advantage. Roughgarden (1983) argues that mutualistic coevolution between ‘host’
(language users) and ‘guest’ (language idiolects) organisms will only occur when the
host benefits (and the experiments reported in section 6 bear out this prediction).

On the assumption that language confers selective advantage, linguistic variants
will compete for language users on the basis of their relative learnability, and,
possibly their interpretability and /or expressiveness. Language users will also evolve
language faculties which improve their capacity to acquire and use language. Given
this scenario, a language can be viewed as a parasitic coevolving species. Under
the alternative assumption that language confers no selective advantage, linguistic
variants will compete for language users solely on the basis of their learnability with
respect to whatever acquisition procedure is in place. However, there will be no
pressure for this acquisition procedure to evolve to favour any particular linguistic
variants. Thus, a language can still be seen as a dynamic system adapting to
the requirements of learnability, but language will have no influence on biological
evolution. Nevertheless, given the implausibility of assuming that language confers
no selective advantage, whatever form this might take, the coevolutionary scenario
seems more likely.

There are several ways in which linguistic evolution and biological evolution
might be argued to be qualitatively different, in addition to such quantitative dif-
ferences as relative speed of change. Linguistic variants may compete for language
users, but it might be argued they do not have a fitness, in the technical sense of
expected number or proportion of offspring (e.g. Maynard Smith, 1998:36f). Rather
the primary mechanism of linguistic inheritance is through a child language learner
actively learning their idiolect, rather than the gene replicating via the medium of
DNA (e.g. Keller, 1994). The degree to which this distinction can be upheld de-
pends on the extent to which a gene is defined as a biochemical object, as opposed to
a unit of information.® In the simulation model, language users may have (relative)
fitness as a consequence, primarily, of their communicative success, whilst languages
have (relative) cost to users depending, primarily, on their fit with their acquisition
procedures. A different but related question concerns the units of linguistic selec-
tion, and whether there can be a corresponding distinction between phenotype and
genotype in linguistic evolution. Linguistic variation is defined in terms of com-
peting constructions which form part of the linguistic environment (or phenotype).
Such variants compete by virtue of being in parametric variation or, perhaps more
generally, because they are variant means of expressing the same meaning. In terms
of the model of the LAD developed in section 2 and simulation model of section 3,
the principles and parameters which define UG and specific grammars form the
ultimate units of linguistic selection.

2 The Language Acquisition Device

A model of the LAD incorporates a UG with associated parameters, a parser, and an
algorithm for updating initial parameter settings on parse failure during acquisition
(e.g. Clark, 1992). The following sections present such a model, which builds on
and extends previous work reviewed in section 1.1.

8Dawkins (1982:109f) and Dennett (1991:341f) make similar points discussing the differences
between genes and memes (minimal ideational units of cultural inheritance putatively subject to
cultural selection).



Forward Application:
X/YY=X Ay [X()] (v) = X(y)

Backward Application:
YX\Y =X Ay XM ) = X(y)

Forward Composition:
X/)YY/Z = X/Z Ay [X(y)] Az [Y(2)] = Az [X(Y(2))]
Backward Composition:

Y\Z X\Y = X\Z Az [Y(2)] Ay [X(y)] = Az [X(Y(2))]

(Generalized Weak) Permutation:

X|Y1)-- Y= XY Y10 Ayn--oy1t XG1--o0)] = Ao y,90 X1 - 5¥0)]

Figure 1: GCG Rule Schemata

2.1 The Grammar (set)

Classical (AB) categorial grammar uses one rule of application which combines a
functor category (containing a slash) with an argument category to form a derived
category (with one less slashed argument category). Grammatical constraints of
order and agreement are captured by only allowing directed application to adja-
cent matching categories. Generalized categorial grammars (GCGs) extend the
AB system with further rule schemata.® The rules of forward application (FA),
backward application (BA), generalized weak permutation (P) and forward and
backward composition (FC, BC) are given in Figure 1 (where X, Y and Z are cat-
egory variables, | is a variable over slash and backslash, and ... denotes zero or
more further functor arguments). Generalized weak permutation enables cyclical
permutation of argument categories, but not modification of their directionality.
Each rule has an associated semantic operation represented here in terms of 7 con-
version in the (typed) Lambda Calculus. Once permutation is included, several
semantically equivalent derivations for Kim loves Sandy become available, Figure 2
shows the non-conventional left-branching one.!® Composition also makes alterna-
tive non-conventional semantically-equivalent (left-branching) derivations available,
as Figure 3 illustrates. Steedman (1988, 1996) presents the arguments for the lin-
guistic utility of composition.

GCG as presented is inadequate as an account of UG or of any individual gram-
mar. In particular, the definition of atomic categories needs extending to deal with
featural variation, further unary/lexical rules will be needed (e.g. Bouma and van
Noord, 1994), and the rule schemata, especially C and P, must be restricted in
various parametric ways so that overgeneration is prevented for specific languages
(e.g. Morrill, 1994). Nevertheless, GCG does represent a plausible kernel of UG;

9Wood (1993) is a general introduction to categorial grammar and possible extensions to the
basic theory. The most closely related theories to that presented here are those of Steedman (e.g.
1988, 1996) and especially Hoffman (1995, 1996).

10Generalized weak permutation (P) is more powerful than the rule sometimes called associa-
tivity (e.g. Wood, 1993:37f) which licenses (X/Y)\ Z = (X\ Z)/Y but not (X/Y)/Z = (X/Z)/Y,
since the latter is also licensed by P. However, P is less powerful than permutation in the extended
Lambek calculus LP (e.g. Wood 1993:64f; Moortgat, 1988:45f) in which directional constraints
are no longer maintained — see Briscoe, 1998b for a more detailed exploration and justification of
the consequences of P.
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Kim loves Sandy

NP (S\NP)/NP NP
kim’ A yx [love'(x y)] sandy’
—F P
(S/NP)\NP
A x,y [love'(x y)]
BA
S/NP

Ay [love'(kim' y)]
FA

S

love'(kim' sandy”’)

Figure 2: GCG Derivation for Kim loves Sandy

The big bad wolf
NP/N N/N N/N N
A P [the’(x) A (P(x))] n)\ P [big/(P)] AP [bad'(P)] X x [wolf'(x)]

A P [the’(x) A big'(P(x))]
C

A P [the’(x) A big!(bad'(P(x)))]

the'(x) A (big'(bad’(wolf'(x))))

Figure 3: GCG Derivation for The big bad wolf

Hoffman (1995, 1996) explores the descriptive power of a very similar system, in
which P is not required because functor arguments are interpreted as multisets. She
demonstrates that this system can handle (long-distance) scrambling elegantly and
generate some mildly context-sensitive, though not some MIX, languages (Joshi et
al, 1991).

The relationship between GCG as a theory of UG (GCUG) and as a specification
of a particular grammar is captured by embedding the theory in a default inheritance
network.!! Figure 4 illustrates schematically and informally a fragment of a such
a network. The network defines intensionally the set of possible categories and
rule schemata via type declarations on nodes. For instance, an intransitive verb
is treated as a subtype of verb, inheriting subject directionality by default from a
type gendir (for general direction). For English, gendir is default right (/) but
the node of the (intransitive) functor category, where the directionality of subject
arguments is specified (subjdir), overrides this to left (\), reflecting the fact that
English is predominantly right-branching, though subjects appear to the left of the
verb. A transitive verb inherits its structure from the type for intransitive verbs
and an extra NP argument with default directionality specified by gendir, and so
forth. A full specification of English will also declare English verbs, such as smile

1 This can be formalized as a semi-lattice of typed default feature structures (TDFSs) rep-
resenting subsumption and default inheritance relationships (Lascarides et al, 1996; Lascarides
and Copestake, 1996, in press) supporting multiple orthogonal (default) inheritance. The TDFS
formalism allows absolute specification, default specification, or unset values in feature struc-
tures. These possibilities correspond to inherited principles and default-valued or unset parame-
ters, respectively.
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T

T

S N Gendir (/)
|
NP
S\INP
\\
(S\NP) /NP

Figure 4: Network fragment for a category set

N NP S gen-dir subj-dir applic
AT AT AT DR DL DT

N gendir applic S NP subj-dir
AT DR DT AT AT DL
applic N NP gen-dir subj-dir S

DT AT AT DR DL AT

Figure 5: Sequential encodings of the network fragment

and love, to be instances of the appropriate categories (types). Wood (1993) further
discusses techniques for embedding categorial grammars, including rule schemata,
in constraint / unification-based representation languages.

For the purposes of the evolutionary simulation described in section 3, GC(U)Gs
are represented as a sequence of p-settings (where p denotes principles or parame-
ters) based on a flat (ternary) sequential encoding of such default inheritance net-
works. The inheritance network provides a partial ordering on parameters, which
is exploited in the acquisition procedure. For example, the atomic categories, N
and S are each represented by a parameter encoding the presence / absence or lack
of specification (T(rue)/F(alse)/U(nset)) of the category in the (U)G. Since they
are unordered in the semi-lattice, their ordering in the sequential coding is arbi-
trary. However, the ordering of the directional types gendir and subjdir (with
values L(eft) /R(ight)) is significant as the latter is a more specific type. The dis-
tinctions between absolute, default or unset specifications also form part of the
encoding (A/D/?). Figure 5 shows several equivalent and equally correct sequential
encodings of the fragment of the English type system described above.

A set of grammars, based on typological distinctions defined by basic constituent
order (e.g. Greenberg, 1966; Hawkins, 1994), was defined as a (partial) GCUG with
binary-valued parameters encoding order, and several others encoding, for example,
the availability of P during a derivation. The eight basic language families are de-
fined in terms of the unmarked, canonical order of verb (V), subject (S) and objects
(O). Languages within families further specify the order of modifiers and specifiers
in phrases, the order of adpositions, and further phrasal-level ordering parameters.
Figure 6 lists the language-specific ordering parameters used to define the full set of
grammars in left-to-right partial order of generality, and gives examples of settings
based on familiar languages such as SVO, “English”, SOVv2, “German”, and SOV,
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gen vl n subj obj v2 mod spec relcl adpos compl
SVO R F R L R F R R R R R
SOVv2 | R F R L L T R R R R R
SOV L F L L L F L L L L ?

Figure 6: The Grammar/Language Set — Ordering Parameters

“Japanese”.'? “English” is an SVO language with prepositions, in which specifiers,
complementizers and some modifiers precede heads of phrases. In the figure, ‘R’
and ‘L’ are mnemonic for left/right and ‘T’ and ‘F’ for true/false or on/off. The
left /right specifications refer to the directionality encodings on functors; for exam-
ple, in “English” specifiers are functors looking for (nominal) arguments to their
right, whilst relative clauses are treated as arguments of categories like NP /Rc and
thus, this functor (relel) is also rightward. There are other grammars in the SVO
family in which all modifiers follow heads, there are postpositions, and so forth.
Not all combinations of parameter settings correspond to attested languages and
one entire language family (OSV) is either unattested or extremely rare (see Pullum,
1981). “Japanese” is an SOV language with postpositions in which specifiers and
modifiers follow heads. There are other languages in the SOV family with less con-
sistent left-branching syntax in which specifiers and/or modifiers precede phrasal
heads, some of which are attested. “German” is a more complex SOV language in
which the verb-second (v2) parameter ensures that the surface order in main clauses
is usually SVO.13

There are 20 p-settings which determine the rule schemata available, the atomic
category set, and the ‘shape’ of functor categories. In all, this CGUG defines just
under 300 grammars. Not all of the resulting languages are (stringset) distinct and
some are proper subsets of other languages. “English” without the rule of permu-
tation results in a weakly-equivalent stringset-identical language, but the grammar
assigns different derivations to some strings, though the associated LFs are iden-
tical. “English” without composition results in a proper subset language. Some
combinations of p-settings result in ‘impossible’ grammars (or UGs). Others yield
equivalent grammars, for example, different combinations of default settings (for
types and their subtypes) can define an identical category set.

The grammars defined generate (usually infinite) stringsets of lexical syntac-
tic categories. These strings are sentence types since each defines a finite set of
grammatical sentences (tokens), formed by selecting a lexical item consistent with
each lexical syntactic category. Such sequences of lexical syntactic categories can be
viewed as triggers (determinate SF-LF pairings) because in this framework knowing
the lexical syntactic category of each word in a sentence is enough to determinis-
tically recover an unscoped LF. Languages are represented as a finite subset of
sentence types generated by the associated grammar. These are a proper subset of
the degree-0 triggers for the language (Lightfoot, 1992:22f). Subset languages are

12Throughout double quotes are used around language names, as convenient mnemonics for
familiar combinations of parameters. Since not all aspects of these actual languages are represented
in the grammars, conclusions about actual languages must be made with care.

13Representation of the vl and v2 parameters in terms of type constraints determining allowable
verbal functor categories is discussed in more detail in Briscoe (1998b). Briefly, v1 corresponds to
verbs being assigned two categories allowing initial and medial position, as in “Welsh”, SVOv1,
in conjunction with a relaxation of default ordering of the argument interpreted as subject being
‘outermost’ (arg0), as for canonical VSO. Whilst, v2 is encoded by requiring auxiliary verbs to take
an underspecified NP argument to their left and a (S\NP) argument to their right with features
and interpretation of this missing NP in the main verb’s argument list bound to the leftward
argument of the auxiliary, as in “German”, SOVv2.
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exemplified by between 3 and 9 such sentence types and full languages by 12 sen-
tence types. The constructions exemplified by each sentence type and their length
are equivalent across all the languages defined by the grammar set, but the se-
quences of lexical categories can differ. For example, two SOV language renditions
of a sentence type / trigger corresponding to The man who Bill likes gave Fred a
present, one with premodifying and the other postmodifying relative clauses, both
with a relative pronoun at the right boundary of the relative clause, are shown
below with the differing category highlighted.

Bill likes who the-man a-present Fred gave
NP, (S\NP,)\NP, Rc\(S\NP,) NP,\Rc NP,, NP,; ((S\NP,)\NP,2)\NP,;

The-man Bill likes who a-present Fred gave
NP, /Rc NP, (S\NP,)\NP, Rc\(S\NP,) NP,2 NP,; ((S\NP,)\NP,3)\NP,;

The expressiveness of a grammar / language is modelled (crudely) in terms of the
proportion of sentence types which can be generated and parsed from the finite
subset for the associated full language.

2.2 The Parser

The parser uses a deterministic, bounded-context shift-reduce algorithm (see Briscoe,
1987, 1998b for further details and justification). It represents a simple and nat-
ural approach to parsing with GCGs which involves no grammar transformation
or precompilation operations, and which directly applies the rule schemata to the
categories defined by a GCG. The parser operates with two data structures, an in-
put buffer or queue, and a stack or push down store. Lexical categories are shifted
from the input buffer to the analysis stack where reductions are carried out on the
categories in the top two cells of the stack, if possible. When no reductions are
possible, a further lexical item is shifted onto the stack. When all possible shift
and reduce operations have been tried, the parser terminates either with a single
‘S’ category in the top cell, or with one or more non-sentential categories indicating
parse failure. The algorithm for the parser working with a GCG which includes
application, composition and generalized weak permutation is given in Figure 7.

A parse history analysing Kim loves Sandy is shown in Figure 8. The first two
columns show the state of the stack and buffer after each step. The third column
names the operation which has applied to produce the state shown at this step.
The final column gives the step number. A similar approach to parsing GCGs is
sketched by Ades and Steedman (1982), and Briscoe (1987) describes a closely re-
lated parser in more detail. This algorithm finds the most left-branching derivation
for a sentence type because Reduce is ordered before Shift. In Figure 8 this results
in Kim loves being reduced to a functor from NPs to Ss by permutation on the
category for loves, and then application. The algorithm also finds the derivation
involving the least number of parsing operations because only one round of permu-
tation occurs each time application and composition fail.'* The category sequences
representing the sentence types in the data for the entire language set are designed
to be unambiguous relative to this ‘greedy, least effort’ algorithm, so it will always
assign the appropriate LF to each sentence type. However, there are frequently
alternative less left-branching or more ‘expensive’ derivations of the same LF, and
in some cases a distinct LF could be recovered by generating all permutations of
functors before attempting application / composition. For example, if permutation

14The preference for left-branching derivations and those involving the least number of pars-
ing operations can be seen as a precise and computationally-tractable instantiation of an ana-
logue of the Economy Principle of the Minimalist Program (e.g. Chomsky, 1991:447f) within this
framework.

14



1. THE REDUCE STEP: if the top 2 cells of the stack are occupied,
then try
a) Application, if match, then apply and goto 1), else b),
b) Composition, if match then apply and goto 1), else c),
c¢) Permutation, if match then apply and goto 1), else goto 2)

2. THE SHIFT STEP: if the first cell of the Input Buffer is occupied,
then pop it and move it onto the Stack together with its associated
lexical syntactic category and goto 1),
else goto 3)

3. THE HaArLr STEP: if only the top cell of the Stack is occupied by a
constituent of category S,
then return Success,
else return Fail

THE MATCH AND APPLY OPERATION: if a binary rule schema matches the
categories of the top 2 cells of the Stack, then they are popped from the Stack
and the new category formed by applying the rule schema is pushed onto the
Stack.

THE PERMUTATION OPERATION: each time step 1c) is visited during the Re-
duce step, permutation is applied to one of the categories in the top 2 cells of
the Stack (until all possible permutations of the 2 categories have been tried
in conjunction with the binary rules). The number of possible permutation
operations is finite and bounded by the maximum number of arguments of
any functor category in the grammar.

Figure 7: The Parsing Algorithm

is not available to the parser at step 3 in Figure 8, the parser will fail to reduce,
and instead shift Sandy onto the stack, reducing loves Sandy first.

The parser is augmented with an algorithm which computes working memory
load during an analysis. This algorithm is based on three uncontroversial features
of human working memory. Firstly, working memory is limited, as evidenced, for
example, by people’s inability to remember sequences of more than a few unrelated
digits. Secondly, there is a strong recency effect on working memory which ensures
that recent or recently-revisited elements of a sequence are better recalled. And
thirdly, the greater the degree of analysis or depth of processing of elements, the
greater the chance of recall (see section 1.1 and Baddeley,1976; 1992).

Limitations of working memory are modelled in the parser by associating a cost
with each stack cell occupied during each step of a derivation, and recency and depth
of processing effects are modelled by resetting this cost each time a reduction occurs:
the working memory load (WML) algorithm is given in Figure 9. Figure 10 gives
the right-branching derivation for Kim loves Sandy, found by the parser utilizing a
grammar without permutation. The WML at each step is shown for this derivation.
The overall WML (16), found by summing the WML at each step, is higher than
for the left-branching derivation (9).

The WML algorithm ranks sentence types, and thus indirectly languages, by
parsing each sentence type from the data exemplifying each language with the asso-
ciated grammar and then taking the mean of the WML obtained for all exemplifying
sentence types. “English” with permutation has a lower mean WML than “English”
without permutation, though they are stringset-identical, whilst a hypothetical mix-
ture of SOV clausal order with “English” phrasal syntax has a mean WML which
is 25% worse than that for “English”. The parser and WML algorithm are broadly

15



Stack Input Buffer Operation Step

Kim loves Sandy 0
Kim:NP:kim’ loves Sandy Shift 1
loves:(S\NP)/NP:\ y,x(love’ x, y) Sandy Shift 2
Kim:NP:kim'
Kim loves:S/NP:\ y(love’ kim', y) Sandy Reduce (P,A) 3
Sandy:NP:sandy’
Kim loves:S\NP:X y(love’ kim', y) Shift 4
Kim loves Sandy:S:(love’ kim', sandy’) Reduce (A) 5

Figure 8: Parsing Kim loves Sandy

After each parse step (Shift, Reduce, Halt (see Fig 7):

1. Assign any new Stack entry in the top cell (introduced by Shift or Re-
duce) a WML value of 0

2. Increment every Stack cell’s WML value by 1
3. Push the sum of the WML values of each Stack cell onto the WML-record

When the parser halts, return the sum of the WML-record which gives the
total WML for a derivation.

Figure 9: The WML Algorithm

in accord with existing psycholinguistically and typologically motivated theories of
parsing complexity (e.g. Briscoe, 1987,1998b; Gibson, 1991; Hawkins, 1994; Ram-
bow and Joshi, 1994). The combination of GCG and shift-reduce bounded-context
parsing allows a fully incremental interpretation (e.g. Milward, 1995) and, although
the model as presented here, is deterministic, it could be straightforwardly extended
to a nearly-deterministic interactive parser (Briscoe, 1987) or a bounded parallel
parser (Gibson, 1991) in order to model the resolution of ambiguity.

2.3 The Parameter Setting Algorithm

The parameter setting algorithm is an extension and modification of Gibson and
Wexler’s (1994) Trigger Learning Algorithm (TLA) to take account of the inheritance-
based partial ordering, the role of memory in learning, variant criteria for retaining
new parameter settings, and so forth. The TLA is error-driven — parameter set-
tings are altered in constrained ways when a learner cannot parse trigger input and
when the alteration results in a successful parse. Trigger input is defined as primary
linguistic data which, because of its structure or context of use, is determinately
unparsable with the correct interpretation.

The TLA is memoryless in the sense that a history of parameter updates is
not maintained, in principle, allowing the learner to revisit previous hypotheses.
This is what allows Niyogi and Berwick (1996) to formalize parameter setting as a
Markov process. However, as Brent (1996) argues, the psychological plausibility of
this algorithm is doubtful — there is no evidence that children blindly move between
neighbouring grammars along paths that revisit previous hypotheses. Therefore, in
the modified algorithm each parameter can only be updated once during the acqui-
sition process, resulting in a learning procedure with (limited) memory. As Brent
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Stack Input Buffer Operation Step WML

Kim loves Sandy 0 0
Kim:NP:kim’ loves Sandy Shift 1 1
loves:(S\NP)/NP:\ y,x(love’ x, y) Sandy Shift 2 1
Kim:NP :kim’ 2 (=3)
Sandy:NP:sandy’ Shift 3 1
loves:(S\NP)/NP:X y,x(love' x, y) 2
Kim:NP :kim’ 3 (=6)
loves Sandy:S/NP:X x(love' x, sandy’) Reduce (A) 4 1
Kim:NP:kim' 4 (=5)
Kim loves Sandy:S:(love’ kim', sandy’) Reduce (A) 5 1

Figure 10: WML for Kim loves Sandy

points out, this results in a consistent algorithm which utilizes triggers in the most
efficient manner possible to traverse the search space. However, because of the use
of default specification in the grammatical representation language, this does not
lead to strictly monotonic refinement of grammatical hypotheses. Thus, despite the
ordered acquisition procedure, the sequence of hypothesized grammars can involve
overriding or retraction of decisions, because parameters encode a default inheri-
tance network. For example, a learner of German can incorrectly hypothesize a
SVO grammar by updating gendir to R(ight) and subjdir to L(eft), but subse-
quently override this and hypothesize underlying SOV by resetting objdir to L(eft).
Now the default effects of gendir will only apply (correctly) within phrasal ordering
—see e.g. Clark (1992) for discussion of the indeterminacy of parameter expression
and its consequences for learnability. Meisel (1995) argues that a limited memory
which prevents resetting of parameters already updated by the learner is essential
for any account of the acquisition of core grammar given the presence of a marked
periphery of constructions.

The TLA is local in the sense that only one (random) parameter can be reset on
parse failure. In the modified algorithm, sometimes this requirement is relaxed to n
parameters per parse failure. Bertolo (1995) argues that this relaxation of the TLA
does not alter fundamental results concerning local maxima and learnability. The
motivation for relaxing the single-value constraint and adopting a n-local variant
of the TLA is twofold: firstly, the selection of a fair sample of triggers / sentence
types with respect to working memory load creates unbalanced trigger paths with
respect to the number of parameter resettings required to successfully learn a given
language; secondly, the parameter n can be varied in the evolutionary simulation,
creating a wider range of acquisition procedures to select from.'5

The TLA is unordered in the sense that on parse failure a parameter is chosen at
random to be updated. In the modified algorithm, parameters are updated starting
with the most general, in terms of the partial order defined by the inheritance
network. Once updated they are not revisited because the procedure utilizes limited
memory. The TLA is greedy in the sense that a parameter updated on parse failure
is retained if that setting allows the current trigger to be reparsed successfully. The
acquisition procedure can be made more incremental, as well as greedy, by relaxing
the requirement that parameter updates must result in a completely successful parse

15To determine whether the grammar / language set explored can be learnt, in principle, by a
non-incremental acquisition procedure with, say, n set to 1 would require an exhaustive specifica-
tion of the set of potential triggers for each language — see Gibson and Wexler, 1994; Niyogi and
Berwick, 1996. Because of the larger size of the grammar / language set explored here this would
be a non-trivial undertaking which is beyond the scope of the current paper.

17




Data: {Sl, SQ, P Sn}

unless
PARSER; (GRAMMAR; (P-SETTING;))(S;) = Success
then
p-setting; = UPDATE(p-setting;)
unless
PARSER; (GRAMMAR; (P-SETTING;))(S;) = Success
then
RETURN p-setting;
else
RETURN p-setting;

UPDATE:

Reset the first n default parameter(s) or set the first n unset parameter(s)
in a ‘left-to-right’ search of the p-settings (consistent with the partial order
encoding their generality) according to the following table:

Input: D1 Do 7?77
Output: RO R1 ?71/0

(where 1 = T/L and 0 = F/R — see figs. 5&6 above)

Figure 11: The Learning Algorithm

for the new setting(s) to be retained. Retaining a parameter update if it results
in an improved parse, defined as the recovery of more of the target LF, results
in a model closer to Dresher and Kaye’s (1990) cue-based approach, as it places
more emphasis on the degree of evidence provided by a trigger for an individual
parameter setting, rather than on obtaining a successful parse. The acquisition
procedure can be made maturational and incorporate the ‘starting small’ hypothesis
(see section 1.1; Elman, 1993). The working memory load of a sentence type can
be used to determine whether it can function as a trigger at a particular stage in
learning, thus filtering random presentation of triggers and ensuring that triggers
are presented in (partial) order of decreasing parsability.

Each step for a learner can be defined in terms of three functions: P-SETTING,
GRAMMAR and PARSER, as:

PARSER; (GRAMMAR, (P-SETTING; (Sentence;)))

A p-setting defines a grammar which in turn defines a parser (where the subscripts
indicate the output of each function given the previous trigger). A parameter is
updated on parse failure and, if this results in a (better) parse, the new setting is
retained. The algorithm is summarized in Figure 11. The core of the algorithm is
the update rule, which is applied to a sequential p-setting encoding as described
in section 2.3; for instance, a default parameter can be reset to its opposite value
and the ‘D’ encoding changed to a ‘R” to record that this default parameter has
been reset, and so forth. In the experiments reported below, unset parameters are
updated to the correct value required to parse the trigger. This has no implications
for convergence of the acquisition procedures. Random setting of unset parameters
would simply require more exposure to appropriate triggers, since settings are only
retained if they result in a successful parse. However, the deterministic approach
is used here in order not to (artifactually) bias the simulation model towards a
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preference for default initial settings.

In summary, this account of the parameter setting procedure is consistent,
error-driven, greedy, possibly incremental, n-local, partially-ordered, utilizes lim-
ited memory, and can incorporate maturationally-developing working memory lim-
itations. Finally, the initial configuration of the parameters in the TLA is usually
taken to be any arbitrary grammar, though as Gibson and Wexler (1994) point
out, assuming (some) specific unmarked initial settings can remove local maxima.
In this model, parameters can be initially unset (?) or have a default (D) value
(see section 2.3). The precise choice of parameters, of their initial settings, of the
n (re)settable parameters per trigger, and of the update success criterion, defines
a space of variant acquisition procedures for the experimenter (or the evolutionary
simulation) to select from.16

The learnability of languages in the model is ranked in terms of the number of
parameters that must be updated to converge to the target grammar, and also in
terms of the maximum number of parameters which must be updated for a single
trigger given an optimal presentation sequence of triggers to a non-incremental
procedure. This ranking is calculated by assuming a learner with all parameters
unset initially (see section 4 below). However, the ranking can also be made more
dynamic by recalculating it for different potential initial p-settings and acquisition
procedures.

3 The Evolutionary Simulation

The computational simulation supports the evolution of a population of Language
Agents (LAgts), similar to Holland’s (1993, 1995) Echo Agents, but equipped with
a LAD, as described in section 2, and a simple sentence generator based on (usually
random) generation of a trigger / sentence type from the LAgt’s current idiolect
(if any).'” LAgts generate and parse sentence types compatible with their current
p-settings. They participate in linguistic interactions which are communicatively
successful if their p-settings are compatible. Compatibility is defined in terms of
the ability to map from a given SF to the same LF, rather than in terms of sharing
of an identical grammar.'® LAgts are either learning a grammar, or have completed
learning and fixed on the grammar and associated idiolect acquired at that point.
In experiments which utilize natural (biological) selection for LAgts, the rela-
tive fitness of a LAgt is a function of the proportion of its linguistic interactions
which have been successful, and optionally of the learnability, expressiveness and/or
interpretability of the grammar(s) / idiolect(s) used by that LAgt during a cycle
of interactions. Thus, fitness is dependent on an agents’ linguistic compatibility
with other agents, creating a form of frequency-dependent selection (e.g. May-
nard Smith, 1998:69f), and also potentially on the complexity of the grammar /

16Tn the simulation,, sentence types used as triggers are represented by p-setting schemata with
associated memory loads to avoid the need for continuous on-line parsing of triggers. Thus, the
model largely circumvents issues of indeterminacy in parameter expression, the need to deal with
‘noise’ in the input, and any consequent errors by the learner (see Clark, 1992). Nevertheless,
the current model can be extended to deal with noise and indeterminacy by embedding it in a
statistical learning framework (Kapur and Clark, 1994; Briscoe, 1998b), though this would involve
abandoning the strictly ordered, consistent acquisition procedure presented here.

171t should, therefore, be clear that the model does not attempt to characterize the emergence
or origin of the LAD. It assumes a prior population of ‘Saussurean’ LAgts, to use Hurford’s (1989)
term, with at least the capacity to represent and learn word:meaning associations, and with the
basic architecture of a LAD.

18P_setting compatibility implements a weak notion of communicative success. Thus, there is
no Gricean entailment of successful transmission of speaker intentions, or of a shared interpreta-
tion. Consequently, the model builds in no strong assumptions about the function(s) of language,
whether this be to influence others, communicate (mis)information, or whatever (see e.g. Pinker
and Bloom, 1990; Keller, 1994:84f for insightful discussion).
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idiolect(s) internalized. Learnability is modelled in terms of the number of param-
eters which need to be set to acquire a target grammar, the highest number which
need to be updated for a single trigger, and the agent’s success rate at correctly
setting parameters. Learning time, and thus the time taken to achieve maximal
communicative success, can also be increased by additional maturational memory
limits during learning. However, this cost might also be offset by the tendency
of such limits to create a more optimal presentation of triggers to the acquisition
procedure. Interpretability is modelled by parsing cost measured in terms of mean
working memory load created during an interaction cycle, according to the WML
model of section 2.2. Expressiveness is modelled (crudely) in terms of an additional
(graded) cost for using a proper subset language of one of the 70 full languages de-
fined by the grammar space. This fitness component is needed in some experiments
because otherwise LAgts tend to converge on less expressive languages with lower
mean WML costs and less parameters to set. In general, the pressures created for
learnability, parsability and expressiveness are conflicting, creating the potential for
complex interactions and trade-offs in the search for (locally) optimal languages.

An interaction cycle consists of a prespecified proportion of individual random
interactions between LAgts, with generating and parsing agents also selected ran-
domly. When natural selection is used, LAgts which have a history of mutually
successful interaction and higher than average fitness can ‘reproduce’; otherwise
LAgts reproduce randomly. A LAgt ‘lives’ for ten interaction cycles. It is possible
for a population to become extinct (for example, if all the initial LAgts go through
ten interaction cycles without any successful interaction occurring), and success-
ful populations tend to grow at a modest rate (to ensure a realistic proportion of
adult speakers is always present). LAgts learn during a critical period from ages
1-4 (defined in terms of interaction cycles) and reproduce from 3-10, parsing and/or
generating any idiolect learnt throughout their life.'®

During learning, a LAgt can reset genuine parameters which either were unset or
had default settings ‘at birth’. However, p-settings with an absolute value (princi-
ples) cannot be altered during the lifetime of an LAgt. This is the manner in which
the distinction between principles, or universal grammar (the genetic endowment),
and parameters, to be updated during the acquisition of a particular grammar, is
modelled. Successful LAgts reproduce at the end of interaction cycles by one-point
crossover of (and, optionally, single point mutation of) their initial p-settings — en-
suring neo-Darwinian rather than Lamarckian inheritance; that is, LAgts inherit
(a composite of) their parents’ genetic endowment and not their acquired (learnt)
characteristics.2? In reproduction there is a high chance of the reproducing LAgts p-
settings being mixed by crossover, where the p-settings are cut and cross-spliced at a
randomly chosen point. There is also, in some experiments, a low chance of a single
element in the resulting p-setting being mutated to an alternative value. Fitness-
based reproduction ensures that successful and somewhat compatible p-settings are
preserved in the population and continually resampled in the search for better ver-
sions of UG, including better initial settings of genuine parameters. Thus, although
the parameter setting algorithm per se is fixed, a range of alternative acquisition
procedures can be explored based on the definition of the set of parameters, their
initial settings, and optionally mutation of the n updatable parameters per trigger.
Crossover and mutation can turn an absolute (inherited) principle into a default or
unset parameter and vice versa, change values of either, and so forth.2!

19The critical period is simply stipulated — Hurford (1991) and Hurford and Kirby (1997) describe
evolutionary simulations in which such a criticial period emerges given certain assumptions.

20The encoding of p-settings allows the deterministic recovery of the initial setting because reset
parameters are those preceded by ‘R’, or ‘7’ followed by a determinate value. ‘?’ parameters are
reset to unset values and default ‘R’ parameters are reset again to the opposite value.

21The use of crossover and mutation operators with the p-setting code is based on genetic
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Figure 12: The Simulation Model

In experiments investigating linguistic selection, there is a need to provide a
source of linguistic variation. In reality, variation is generated by language contact
and borrowing, linguistic innovation, reanalysis during learning, and so forth (see
e.g. Harris and Campbell, 1995; Milroy, 1992). In the simulation, this is modelled
by introducing additional adult LAgts with a different full language at regular in-
tervals, or by initializing the simulation with two genetically-identical adult groups
speaking different full languages. That is, all variation is a consequence of popula-
tion movement and no attempt is made to model the actuation of linguistic change.

Figure 12 illustrates the model graphically. There are two interacting evolving
domains of LAgts and of languages. Selection for languages operates on sentence
types (stl,st2...stN) some of which act as triggers during language learning by
LAgts. Linguistic selection is either simply in terms of the learnability of triggers or
more generally in terms of the parsability and expressiveness of sentence types for all
LAgts, depending on the fitness function utilized. Thus, the pool of sentence types
in the linguistic arena of use (Hurford, 1987) changes over time as LAgts select from
language variants. The ultimate units of linguistic evolution are the principles and
parameters encoded in LAgts’ p-settings, but selection operates directly on sentence
types or constructions. This is the analogue of the distinction between phenotype
and genotype in linguistic evolution. Natural selection operates on LAgts and is
driven principally by their communicative success but can also take account of the
working memory resources used in parsing and their expressiveness, depending on
the fitness function utilized. The ultimate units of biological evolution are the initial
configurations of their p-settings prior to learning. As LAgts evolve through time,
this can affect the relative learnability of languages.

Figure 13 summarizes crucial options in the simulation giving typical values
used in the experiments reported below, Figure 14 shows the potential costs and
benefits to a LAgt of each interaction, and Figure 15 the components used to define
fitness functions. (For calculation of parsability only successfully parsed sentence

algorithms (see e.g. Holland, 1993, 1995). However, the simulation is not technically one as fitness
is internal to each LAgt and generations overlap. Also this use of genetic algorithm techniques
should not be confused with Clark (1992) and Clark and Roberts (1993) model of the parameter
setting procedure as a genetic algorithm.
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Variables Typical Values

Initial Population Size 32
Interaction Cycle Av. Interactions/LAgt 15-65
Simulation Run Int. Cycles 50-10k
Crossover Probability 0.9
Mutation Probability 0/0.05
Learning memory limited yes

critical period 4 int.cycles

(re)settable n 1/4
Migrations lg distance 3

per cycle 2

not genetic T

Figure 13: Typical Simulation Options

—_

Generate cost: 1 (GC)

Generate subset language cost: 1-3 (GSC)
Parse cost: 1 (PC)

Parse failure cost: 1 (PF)

Parse memory cost: WML(st)
Parse/Generate success benefit: 1 (SI)
Parameter (re)set cost: 1 (PS)

Parameter (re)set success benefit: 1 (SPS)

© ® N o otk wN

Maximum (re)settable parameters: n (MSP)
Figure 14: Cost/Benefits per Interaction

types are utilized, hence parse failures (PF) are subtracted from the total number
of parse interactions for a LAgt. Predefined constant weights are used to balance
the selection pressure created by the individual elements of fitness functions.)

4 Preliminary Experiments

The computational model must have several properties to qualify as a useful simula-
tion of the grammatical acquisition process and of the (co)evolution of language and
of the LAD. Firstly, it must be clear that for the chosen grammar set, at least some
acquisition procedures in the space of possibilities definable in terms of LAgts’ p-
settings, are able to learn these grammars given finite and feasible (positive) input.
Secondly, learning LAgts should converge reliably on the homogeneous language
of a population of adult LAgts to model language maintenance and the continuity
of language communities. Thirdly, it should be clear that coordinated grammars
will evolve at some point during simulation runs quasi-randomly initialized with a
population of non-communicating LAgts. Otherwise the model does not provide an
environment in which the emergence and maintenance of structured language and
its learners is likely.
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Fitness Components
.. . SI
Communicative Performance: GORPC

Expressiveness: %

Learnability: ﬁ X SP—I?

Parsability: %

Full Fitness Function: wl(CP) x w2(Exp.) x w3(Lrn.) X wi(Pars.)

Figure 15: LAgt Fitness

4.1 Effectiveness of Acquisition Procedures

Four acquisition procedures were predefined on the basis of two initial p-settings,
unset and default, and two variants of the basic procedure, incremental n = 1 and
non-incremental n = 4. Unset learners were initialized with p-settings consistent
with a minimal inherited CGUG consisting of application with the N and S atomic
categories already present. All the remaining p-settings were genuine parameters
for both learners. The unset learner was initialized with all these unset, whilst the
default learner had default settings for the parameters argorder, gendir, subjdir,
vl and v2 which specify a minimal SVO right-branching grammar. The unset
learner represents a ‘pure’ principles-and-parameters learner with innate knowledge
of the noun-verb distinction and their (predicate-argument) mode of combination.
The default learner is loosely modelled on Bickerton’s (1984) bioprogram hypothesis,
representing, additionally, a language learner with a preference for SVO unmarked
order and predominantly right-branching syntax.?? These initial p-settings were
combined with two acquisition procedures. One, n4, in which 4 parameters were
updatable per trigger but updates were only retained if they resulted in a complete
LF, and a second, il, in which only one parameter could be updated per trigger but
the updated value was retained if it resulted in recovery of more of the LF.

Each variant learner was tested against an adult LAgt initialized to generate one
of seven full languages in the set which are close to an attested language; namely,
“English” (SVO, predominantly right-branching), “Welsh” (SVOv1, mixed order),
“Malagasy” (VOS, right-branching), “Tagalog” (VSO, right-branching), “Japanese”
(SOV, left-branching), “German” (SOVv2, predominantly right-branching), “Hix-
karyana” (OVS, mixed order), and a hypothetical OSV language with left-branching
phrasal syntax. In these tests, a single learner interacted with a single adult, in
which the adult always randomly generated a sentence type and the learner always
attempted to parse and learn from it. The first figure in Table 1 shows the mean
number of triggers (i.e. number of input sentences) required by the four learners
to converge on each of the eight languages. The figure in brackets shows the mean
number of triggers required for convergence when memory load was used to filter
the learners’ access to triggers in accordance with the ‘starting small’ hypothesis
(see section 1.1). These figures are each calculated from 1000 trials and rounded
down to the nearest integer. When no memory constraints were imposed, each
learner converged with less than a 1% error rate, to the target grammar on the
basis of 100 random presentations of trigger sentences. 200 trigger sentences were

22Lightfoot 1992:174f argues that the evidence from the pidgin-creole transition only supports a
strictly weaker position than that of Bickerton (1994) in which some parameters have unmarked
settings that are retained during language acquisition in the absence of robust positive evidence
for a marked setting. Lightfoot’s weaker version of the bioprogram hypothesis is the one embodied
in the SVO learner (modulo his discussion of Berbice Dutch) as this learner simply has more
unmarked default parameter settings than the unset learner, and no ‘special’ mechanisms for
acquisition which take over in the pidgin context.
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Learner Language

SVO SVOvl VOS VSO SOV SOVv2 OVS OoSv
Unset (nd4) 26 (32) 26 (31) 18 (26) 18 (25) 18 (25) 27 (33) 27 (30) 17 (20)
Default (nd4) | 14 (26) 17 (24) 16 (24) 17 (25) 15(23) 15(25) 18 (26) 26 (27)
Unset (il) 32(98) 30(82) 30(89) 31(84) 31(78) 31(97) 31(84) 31 (45)
Default (i1) | 29 (93) 28 (72) 30 (74) 30(73) 30(70) 28(89) 30 (73) 31 (49)

Table 1: Effectiveness of Four Acquisition Procedures

required to achieve convergence with this reliability when memory constraints were
imposed. Thus, we can conclude with reasonable confidence that all these learners
will converge for the languages tested, given this distribution and amount of data,
with p > 0.99. (See Niyogi and Berwick, 1996 for detailed discussion of high-
probability convergence from finite data.)

These results suggest that, in general, the default learners are more effective
than the unset learners, though the difference is small and possibly insignificant
for the incremental learner. For the OVS language (OVS represents 1.24% of the
world’s languages; Tomlin, 1986), for the unattested or very rare OSV language,
and for SOVv2, the default (SVO) n4 learner appears less effective. In memory-
constrained learning, learners pass through 4 maturational stages at each of which
the allowable memory load during parsing is increased, and 25% of the triggers are
presented at each stage. Unsurprisingly, given that the acquisition procedures are
consistent, memory-based filtering of triggers does not affect convergence. However,
it does slow it down since more triggers are required at each stage to ensure the
learner has a high chance of being exposed to a convergent set of triggers overall.
The variable performance of the different learners on the various languages suggests
that many, perhaps intuitively unimportant, aspects of an acquisition procedure can
affect its performance on a specific language, and consequent predictions concerning
the relative learnability of languages.

Many other variant procedures result in effective learners for some or all of
the eight languages tested, given varying amounts of triggering data. Testing the
above learners on randomly-generated full languages suggests that these learners
are capable of converging on any language in the set defined in the simulation.
However, stronger conclusions would require either exhaustive experimentation or
development of a formal proof of convergence (see Gibson and Wexler, 1994; Niyogi
and Berwick, 1996; Osherson et al., 1986).

4.2 Language Maintenance

The simulation employs random interactions within a population, some of whom
will be learners. Thus, a proportion will involve learning LAgts interacting with
each other or generating input for adult LAgts, before they have converged on
the target language. Even in an initially homogeneous adult LAgt environment
with a critical period for learning, if the proportion of learners to adults in the
population becomes too high, the learners will not converge to the target language
as the distribution of sentence types becomes more skewed towards those of subset
languages. Two series of 50 interaction cycle simulations were run each initialized
with either 32 adult unset n4 learners or 32 adult default n4 learners all speaking
one of the eight languages described above. LAgts reproduced (without mutation)
and died as described in section 3. However, given the p-settings of the initial
population, LAgts were only able to reproduce further unset or default learners
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or hybrid learners generated via crossover of these two acquisition strategies. In
one series, memory limitations in learning was a factor and each interaction cycle
consisted of a mean of 65 interactions per LAgt. In the other, memory limitations
was not a factor and a mean of 25 interactions per cycle was used. Each condition
was run 10 times.??

In all the runs, the population continued to speak the original language and
learners reliably converged to that language by adulthood. Thus, any (non-target)
subset language speakers in the population at the end of an interaction cycle were,
without exception, learners. In these runs, the proportion of adults never fell be-
low 60%, and the levels of reproduction and death relative to population size were
tuned to ensure language maintenance. Briscoe (1998b) gives further details of ex-
periments to test and tune the (potential) stability of the simulation model. At first
sight, the property of language maintenance or stasis may seem somewhat contra-
dictory for an evolutionary model. However, it is critical that the model possess the
potential to be stable (once all/most genetic and/or linguistic variation is removed)
if it is to represent a plausible model of language acquisition and development.
Though very occasional misconvergence during learning in ideal (i.e. homogeneous)
conditions is probably possible, few would argue that this alone is the source of lan-
guage change. Rather most linguistic change is probably a consequence of variation
introduced through contact between language communities (e.g. Milroy, 1992), and
the consequent linguistically heterogeneous data supplied to the learner. This is
true even for those researchers who argue that language acquisition is the engine of
change (e.g. Kroch and Taylor, 1997).

4.3 Emergence of Structured Language and its Learners

To explore the emergence and persistence of structured language (and consequently
the emergence of effective learners) in the simulation model (pseudo) random ini-
tialization was used. A series of simulation runs of 500 cycles (approximately 125
generations of LAgts) were performed with random initialization of 32 LAgts’ p-
settings for any combination of p-setting values, with a probability of 0.25 that a
setting would be an absolute principle, and 0.75 a parameter with unbiased alloca-
tion for default or unset parameters and for values of all settings. All LAgts were
initialized to be age 1, memory-limited n4 learners with a critical period of 4 inter-
action cycles, a maximum age of 10, and the ability to reproduce by crossover (0.9
probability) and mutation (0.05 probability) from 4-10. The full fitness function
defined in section 3 was utilized. In around 5% of the runs, language(s) emerged
and persisted to the end of the run.

Languages with close to optimal parsability typically came to dominate the
population quite rapidly. However, sometimes less parsable languages were initially
selected, and occasionally these persisted despite the later appearance of a more
optimal language (but with few speakers). Typically, a minimal subset language
dominated — although full and intermediate languages did appear briefly, they did
not survive against less expressive but more easily learnable and parsable subset
languages. Figure 16 is a typical plot of the emergence (and extinction) of language
variants in one of these runs. In this run, around 10 of the initial population
converged on a minimal OVS language and 3 others on a VOS language. The latter
is more parsable / learnable and both are of equal expressiveness so, as expected,
the VOS language acquired more LAgts over the next few cycles. A few LAgts
also converged on VOS-N, a more expressive but less easily parsable extension

23Tn these and subsequent experiments reported in this paper, the relevant results were observed
in all runs (and others not discussed), so no statistical analysis beyond means is reported. The use
of standard deviations, error bars and/or tests of significance would only be informative if results
were less clearcut.
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Figure 16: Emergence of language(s)

of VSO-N-GWP-COMP.?* However, neither this nor the OVS language survived
beyond cycle 14. Instead a VSO language emerged at cycle 10, which has the same
minimal expressiveness of the VOS language but is more parsable, and this language
dominated rapidly and eclipsed all others by cycle 40. Figure 17 is a plot of the
mean fitness of LAgts through this entire run.?® As can be seen, fitness improves
rapidly early in the run, once a single dominant language emerges. Subsequent
downward fluctuations are mostly caused by the occasional re-emergence of a few
non-speaking LAgts who fail to learn the language, and upward fluctuations by a
lower proportion of learners in the population, or by the increased use of a more
parsable / learnable language.

As full languages did not emerge in these runs, a second identical set of 10 runs
was undertaken, except that the initial population now contained 2 SOVv2 “Ger-
man” speaking unset learner LAgts. In 7 of these runs, the population fixed on a
full SOVv2 language, 2 on the intermediate subset language SOVv2-N, and 1 on
the minimal subset language SOVv2-N-GWP-COMP. These runs suggest that if a
full language defines the environment of adaptation then a population of randomly
initialized LAgts is more likely to converge on a (related) full language. Thus, al-
though the simulation does not model the development of expressiveness well, it
does appear that it can model the emergence of effective acquisition procedures for
(some) full languages. The pattern of language emergence and extinction followed

24The names for languages are intended to be mnemonic: the first element indicates basic
constituent order, the remaining elements delimited by ‘~/+’, say what (un)marked features were
absent / present from the associated grammar. For example ‘~N’ indicates no complex multiword
NPs, -GWP indicates no permutation operation, and so forth. NIL represents speakers of no
language.

25Mean fitness is a measure in the range 0-1 combining mean communicative success, and
mean LAgt learning costs (learnability), memory load (parsability) and subset language costs
(expressiveness) — see section 3 above).
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Figure 17: Mean fitness with language emergence

that of the previous series of runs: more parsable languages were selected from those
that emerged during the run. However, often the initial locally optimal SOVv2 itself
was lost before enough LAgts evolved capable of learning this language. The mean
fitness and communicative success measures show very similar patterns to that of
the previous runs. However, learning rates are worse, reflecting the more complex
linguistic environment. There are clear changes in the percentages of absolute, de-
fault or unset p-settings in the population: the mean number of absolute principles
declined by 6.1% and unset parameters by 17.8%, so the number of default pa-
rameters rose by 23.9% on average between the beginning and end of the 10 runs.
This contrasts with the previous series of runs in which there was a greater increase
in absolute principles than increase in default parameters. This may also reflect
the more complex linguistic environment, in which (incorrect) absolute settings are
more likely to handicap, rather than simply be irrelevant to, the performance of the
LAgt.

These experiments demonstrate linguistic selection, chiefly for more parsable /
learnable languages, and natural selection for LAgts with initial p-settings support-
ing effective language learning. They also suggest coevolution is occurring: there is
a clear preference for absolute principles or default parameters over unset parame-
ters. Unset parameters represent the least informative p-setting, whilst both default
parameters and absolute principles provide more information about the linguistic
environment. The preference for default parameters over absolute principles in the
environment of one or more complex (full) languages may reflect the fact that in
these simulations a dominant language is emerging as acquisition procedures are
evolving, so flexibility is selected over further attenuation of the acquisition proce-
dure in the absence of a constant and homogeneous linguistic environment. The
experiments reported in subsequent sections investigate each of these results inde-
pendently and in more depth.
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5 Linguistic Selection

Selection for grammars and thus languages might occur as a consequence both of
acquisition procedures and of the conflicting preferences for more parsable and more
expressive languages. In the simulations discussed in the previous section, selection
for more parsable / learnable languages occurred (although in some cases a more
optimal language did not survive because it was spoken by too few speakers). But, it
is not possible to definitely say whether it is parsability, properties of the acquisition
procedure, or the proportion of speakers which is the causal factor in any given case.
It is not even clear what precise form of the acquisition procedure is being deployed
at any point in the randomly-initialized populations.

5.1 Linguistic Selection between Language Pairs

In more circumscribed experiments, linguistic selection for more parsable and/or
more learnable languages, and the interplay between these two pressures as well
as the ‘robustness’ of critical triggers, can be demonstrated directly. A series of
300 cycle simulations was run in which a population of 32 LAgts was initialized
with differing proportions of unset n4 learner adult LAgts speaking two different
full languages which contrasted in learnability and/or parsability. There were no
differences in the initial p-settings in the population and mutation was not enabled.
All conditions were run 10 times.

In one such series of experiments, the population was initialized with speakers
of “German”, SOVv2, and “German with postpositions”, SOVv2+Pleft. These lan-
guages differ only in one directional parameter setting. There is no inherent learn-
ability advantage, in terms of numbers of parameters to be set, for either variant
given the unset learner. However, there is a small difference in the parsability of the
two languages according to the WML metric (as Hawkins (1994) also predicts) with
a preference for the more consistently right-branching phrasal syntax of “German”.
Utilizing the full fitness function but no memory limitations during learning, and
initializing with equal numbers of speakers of each variant, the population selected
one or other variant within a mean 143 interaction cycles. The variant selected was
dominated by the random factors in the simulation — principally how many learning
LAgts happened to be exposed to a critical post/pre-positional trigger in a cycle of
interactions. Figure 18 shows a typical run in which SOVv2 happens to emerge as
the dominant language around cycle 260. When the proportion of postpositional
speakers was reduced to one third of the initial population, then in two-thirds of the
runs “German” emerged as the dominant language. When this proportion was fur-
ther reduced to one fifth of the initial population, then “German” became dominant
(within about 50 cycles) in all the runs. Figure 19 shows a typical run in which there
is clear selection for SOVv2 as the initial frequency of the postpositional triggers is
too low for this variant to gain enough of a foothold. Inverting these experiments so
that the frequency of prepositional triggers is progressively lower does not produce
a symmetric effect. It is only when less than one-tenth of the initial population
are producing such triggers that selection of the postpositional variant occurs in all

runs.26

26Tn an evolutionary model, random drift alone with no selection will (eventually) lead to the
eradication of variation. This effect is well known in population genetics and can be analyzed
probabilistically under certain assumptions about population size and the distribution of offspring
within the population (e.g. Maynard Smith, 1998:25f; Roughgarden, 1979). The upshot is that for
small finite populations fixation on a linguistic variant by random drift can be expected to occur
within 2N interaction cycles with a standard error a little greater than N, where N is population
size. As the population in these simulations initialized with 32 LAgts typically rises to around
60 quite quickly and then stabilizes, consistent fixation within 50 interaction cycles in 10 runs
constitutes reliable evidence of linguistic selection.

28



No. of Speakers

No. of Speakers

70

60

70

60

"SOV-V2" ——
"SOV-V2+PLEFT" -
"SOV-V2-N" -----

50 100 150 200 250 300
Interaction Cycles

Figure 18: Random selection
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Figure 19: Linguistic selection
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These runs show that general parsability factors for both adults and learners can
militate (weakly) against a variant form by reducing the fitness of LAgts employing
that form. This general explanation for linguistic selection has been questioned
though, since it relates parsability directly to LAgt fitness. Lightfoot (1991) and
others have argued that it is unlikely that specific properties of a language spo-
ken by speakers would lead directly to increased numbers of offspring. It might
be more plausible to argue that such properties might lead indirectly to increased
offspring by increasing communicative success. Such an indirect effect could eas-
ily be incorporated into the simulation model by positing that the probability of
successful interaction is partly a function of the working memory load created by
the sentence type chosen. An alternative assumption is that maturational working
memory limitations will decrease the chances of less parsable sentence types func-
tioning as effective triggers (see e.g. Kirby, 1996, 1997, 1998 for a similar position).
To simulate this scenario, the same set of runs was done with random selection
for LAgts but with memory limitations during learning. The results show a very
similar pattern to those reported above, though the selection effect is weaker and it
is only when the proportion of initial postpositional speakers is less than one sixth
that the prepositional language dominates reliably. A final variant of this exper-
iment is to assume initially equal numbers of speakers of each variant but weight
the production of sentence types by their parsability, under the assumption that
speakers avoid less parsable sentence types, perhaps to improve their chances of
communicative success (e.g. Hawkins, 1994:180f). Altering the LAgts’ generation
algorithm so that sentences selected with WMLs above 40 have a less than 100%
chance of being uttered, falling from 80% for a WML over 40 to 20% for WMLs
over 200, ensured that in all runs the population converged on SOVv2. Therefore,
the simulation model predicts that, given any assumptions allowing an effect of
parsability on language learning, production and/or interpretation, parsability will
cause linguistic selection.?”

The interplay between parsability and learnability can be seen in simulation
runs initialized with equal numbers of “German”, SOVv2, and “Japanese”, SOV,
speakers. SOVv2 has a slightly lower mean WML, and thus parsability, than SOV
(largely because the freer constituent ordering options of Japanese relative to Ger-
man are not modelled effectively in “Japanese” (see e.g. Hawkins, 1994)). Figure 20
shows the languages which emerge during one run with the full fitness function.
SOVv2 comes to dominate the population after 5 interaction cycles. The other lan-
guage which persists, SOVv2-N, is a subset language spoken by learners of SOVv2.
SOVv2-GWP-COMP is also a subset language of SOVv2 so the ‘recurrence’ of this
language at cycle 45 just reflects presence of one or two less successful learners at
the end of an interaction cycle. The other non-v2 languages are eliminated within
the first 5 interaction cycles. All runs exhibited the same clear effect. However, with
parsability not a factor in LAgt fitness, the opposite result was obtained — in all
runs SOV came to dominate with SOV-N(-GWP-COMP) subset languages, again
spoken exclusively by learners. As SOV is consistently selected in all such runs
when parsability is not a factor, this is most likely to be because SOVv2 requires
the setting of the v2 parameter and mixed clausal / phrasal ordering parameters, re-
flected in the greater number of triggers required for convergence in Table 1. Thus,
in the case of these two languages, ease of parsability for both learners and users
creates greater overall linguistic selection pressure than that created by the other

27Caution should be used when making inferences from these results concerning the frequency
thresholds of the postpositional trigger. A different and probably more plausible learning algorithm
which ‘damped’ response to an initial trigger and tracked the relative frequencies of conflicting
triggers in the input before finally setting a parameter (e.g. Kroch, 1991; Niyogi and Berwick,
1997b) would make different predictions, though the basic conclusion concerning linguistic selection
would still hold.
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Figure 20: Selection for SOVv2 over SOV

requirements of learnability.

5.2 Linguistic Selection with Migrations

To demonstrate more general linguistic selection for more (locally) optimal gram-
mars / languages, a number of experiments were undertaken with p-setting invariant
populations of LAgts operating in a continuously heterogeneous linguistic environ-
ment, providing the variation on which linguistic selection could work. Migrations
of adult LAgts speaking a different language, whenever the population was close to
convergence on a single language, ensured heterogeneity. Language change occurs
when learners converge preferentially on one or other language, or a mixture, or a
subset, whilst exposed to data from more than one source grammar. There is also
an increased possibility of misconvergence to a grammar not directly exemplified
in the adult population when the (uniform) distribution of triggers from a single
source is skewed by the presence of several sources. This is particularly true for
parameters with default initial settings.

In this series of experiments, approximately one third additional adults were
added to the population at regular intervals, all speaking the same new full language
to ensure that the new language had a reasonable chance of surviving a number of
cycles and thus influencing learners. LAgts added in this fashion had identical
initial p-setting configurations as the existing population, so no genetic variation
resulted. The maximal ‘distance’ between an existing dominant language and the
new language was three parameters. ‘Migrations’ of this type occurred every other
cycle provided that a clearly dominant language had emerged at the end of the
previous cycle. Thus, migrations ensure a constant source of linguistic heterogeneity
throughout a simulation run. The amount of variation introduced was tuned to
the maximum consistent with the population maintaining a mean communicative
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Figure 21: Number of languages in a typical run with migrations

success level of 90% or better. After the first interaction cycle in all runs with
migrations there are always two or more language variants present in the linguistic
environment at any one time. Figure 21 plots the number of languages in the run
using the full fitness function discussed below (which is also typical for the other
conditions discussed).

In the first set of experiments, no fitness function was utilized, 500 cycle runs
were used, and all LAgts were unset n4 learners, as defined in section 4.1. LAgts
reproduced randomly with no regard for communicative success or the nature of the
language they utilized. However, because all LAgts were using an effective acqui-
sition procedure, because the simulation was initialized with a single full language,
and because the amount of linguistic variation was controlled, in all runs commu-
nicative success averaged over 90%. This is plotted in Figure 22 for a typical run
— dips correspond to points where migrations occurred. The overall mean costs of
the languages adopted by the population were reduced during the course of this
and other runs via linguistic selection for learnability, as illustrated in Figure 23.
The figure plots an integrated measure for the mean learnability, parsability and
expressiveness of the languages present in each interaction cycle, and also breaks
this down into the three components, so it can be seen clearly that the population
is optimizing leanability at the expense of expressiveness. In this and other runs
with random LAgt selection, the population selected subset languages, which are
less expressive but more easily learnable, as they require fewer parameters set. As
memory load plays a role in learnability via the filtering of triggers, often, but not
in every case, parsability was also selected for. Similar results were obtained from
all ten runs.

These results confirm that linguistic selection can occur without any natural
selection for LAgts whatsoever. The bias of the acquisition procedure which the
LAgts use is enough to create a process of selection for the most learnable lan-

32



1 WNWW"W(T Ty M T~ Ty

09 E

Mean Comm. Perf.
o
[ee)
T
1

0.7 - —

06 1 1 1 1
0 100 200 300 400 500
Interaction Cycles

Figure 22: Communicative success with random selection and migrations

guages. Kirby (1996, 1997, 1998) explores in detail this form of linguistic selection
as languages, or more accurately triggers, pass repeatedly through the ‘bottleneck’
of language acquisition. Essentially, triggers compete for learners and those which
are more able to pass through the filter of the acquisition procedure will set more
parameters in more learners. In this way languages will over time adapt to the lan-
guage acquisition procedure. Kirby argues that, on the assumption that parsability
is identical to learnability, languages will, therefore, evolve to be optimally parsable,
and demonstrates that this form of linguistic selection may explain statistical con-
stituent order universals without the need for any natural selection for LAgts.?8
One weakness of this position is that Kirby only models differential learning be-
tween competing variants. Once a more complete acquisition procedure is defined,
the possibility of simply not learning arises, and thus the possibility of converging
on a subset language. This is exactly what is seen in runs of the simulation model
without natural selection for LAgts — there is no pressure for LAgts to prefer a more
expressive, and thus costly, language, so, even if the population is initialized to use
such a language, the community soon selects for subset languages. A counteracting
pressure for expressiveness is needed to prevent this tendency.

Other runs were performed using communicative success, parsability, expressive-
ness and/or learnability as components of the fitness function on LAgt reproduction.
In the runs where expressiveness was a component of selection, the population did
not converge on subset languages despite the linguistic variation in the learning en-
vironment created by migrations. When the full fitness function was utilized, LAgts’
mean fitness typically did not vary greatly, except where migrations removed them
temporarily from a (local) optimum. The mean language costs for parsability, learn-

28 Briscoe (1998b) discusses Kirby’s work in more detail. In the model described here, learn-
ability involves other factors than parsability, but also parsability can be a factor in more general
communicative success (see section 5.1) creating other routes for linguistic selection.
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Figure 23: Language costs with random selection and migrations
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Figure 24: Language costs with natural selection and migrations

ability and expressiveness displayed in Figure 24 demonstrate consistent linguistic
selection for more easily learnable and parsable full languages. This is typical of
such runs where the full fitness function is utilized.2? Comparing this with Figure 23
above demonstrates the contrast with linguistic selection without natural selection.

The experiments reported in this section demonstrate that linguistic selection
occurs whenever there is linguistic variability under a wide range of different possible
assumptions about the precise impact of learnability, parsability, expressiveness, and
communicative success. However, in these experiments, the acquisition procedure
has been held constant. The next section explores the effect of natural selection
amongst variant acquisition procedures.

6 Natural Selection

The following experiments explore the relative efficiency of several variant acquisi-
tion procedures on a range of full languages, by holding the linguistic environment
constant but allowing natural selection between variant acquisition procedures to
occur. The role of memory limitations in learning is also explored. The experiments
provide the background for exploring the coevolutionary dynamic between linguistic

29In some cases, migrations still cause the population to settle on a less optimal language,
though this is far less frequent with natural selection for LAgts. The use of random interaction
between L Agts idealizes a vast range of sociolinguistic factors which influence selection between
linguistic variants, such as the prestige, charisma, economic power or ideology of the speakers of
the variants, and so forth. In reality, these factors probably significantly outweigh considerations
of selection for parsability or learnability in many situations; for example, where the migrants
are conquering invaders. In addition, the simulation does not address differences in death rates
between linguistic groups due to disease, genocide, and so forth. Dixon (1997) and Pullum (1981)
provide an extended discussion of such factors.
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selection amongst variant languages and natural selection from variant acquisition
procedures.

6.1 Evolution of Acquisition Procedures

A series of 300 interaction cycle runs were performed in which the population was
initialized with 16 unset and 16 (SVO) default learners, as defined in section 3.
All the initial population were adults speaking one of six full languages. They
were either all incremental learners able to update one parameter per trigger or
all non-incremental learners able to update 4 parameters per trigger. There was
no mutation, so natural selection was only able to select between the five initial
parameter settings which distinguish the unset from default learners. Crossover
alone cannot change the initial default value of a parameter, only its status as default
or unset so the question being explored is under what conditions default parameters,
with the default values specified by the default (SVO) learner of section 3, would
be retained in preference to unset versions of these parameters. In all runs, the full
fitness function was used, but all conditions were run with and without maturational
memory limitations during learning.?°

The results of these experiments demonstrate marked interacting effects of lan-
guage type, acquisition procedure and memory limitations on the propensity for
specific default initial parameter settings to go to fixation. Table 2 shows the per-
centage of simulation runs under the varying conditions for which default-valued
parameters went to fixation in the population within 300 interaction cycles. For
example, with the non-incremental memory-limited acquisition procedure applied
to “English”, SVO, the Arg0 parameter was default-valued for every member of the
population by the end of 80% of runs. On the other hand, with the incremental
memory-limited learner ArgQ fixated to a default parameter in only 10% of runs.
Thus, in 20% of runs with the non-incremental learner and 90% of runs with the
incremental learner, an unset version of Arg0 went to fixation in the population.3!.
The figure in brackets after each percentage indicates the mean number of inter-
action cycles to fixation for each condition. In similar experiments with random
selection of LAgts, this mean across all conditions was 139, which gives an estimate
of the average time taken to fixation under random drift. Thus, mean fixation times
of 50 cycles or less with a strong bias (say, > 80% or < 20%) towards either type of
parameter constitute reasonable evidence of consistent selection pressure. However,
either a strong bias coupled with a higher mean fixation time or lack of a strong
bias, even with a lower fixation time, cannot be considered reliable evidence.

If we consider the subject direction parameter (subjdir) with and the non-
incremental memory-constrained learner (n4+ml), we can see that there appears to
be quite strong selection pressure in favour of the default initial (leftward) setting
when learning SVO, VOS or SVOv1, weaker pressure for VSO and SOV and either
very weak or no pressure for SOVv2. Similar interactions with language are in ev-
idence with the other parameters and acquisition procedures. On the other hand,
this pressure for a default initial value for subjdir, and other parameters, is gener-
ally reduced or gone when the non-incremental learner is not memory-constrained,
as can be seen from the generally higher fixation times and lower percentages. With

30Gimilar results in most runs would be obtained by running the same experiments with a fitness
function based purely on communicative success, or communicative success and learning cost,
because the effects of expressiveness and parsability are rendered negligible by the linguistically
homogeneous environment. However, some form of natural selection for LAgts is required in order
to preclude simple random drift amongst variant acquisition procedures (which, given enough
variation, invariably results in loss of language in the population).

31In about 2% of cases, specific parameters did not go to fixation for either type and the
population retained variation. In these cases, the percentage count assigned to default-valued
parameters was halved in Table 2
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Learner

nd4+ML

arg0
gendir
subjdir
vl

v2

n4-ML

arg0
gendir
subjdir
vl

v2

il+ML

arg0
gendir
subjdir
vl

v2

i1I-ML

arg0
gendir
subjdir
vl

v2

Language
VOS VSO
50% (29)  60% (39)
50% (30)  60% (61)
100% (32)  80% (58)
100% (62)  90% (54)
100% (50)  90% (76)
90% (30)  90% (31)
90% (30)  80% (41)
100% (28)  70% (63)
95% (88)  90% (55)
100% (59)  90% (88)
20% (24)  20% (35)
30% (27)  20% (43)
60% (27)  20% (43)
20% (27)  20% (43)
30% (63)  10% (49)
0% (33) 40% (22)
0% (40)  20% (42)
0% (40)  40% (42)
60% (40)  20% (42)
40% (150)  20% (131)

Table 2: Percentage of Default-Valued Parameters and Mean Fixation Times

37




the incremental learner there appears to be no consistent pressure for either type
of initial value, especially without memory constraints; or an opposite pressure for
an unset initial value, as with subjdir and il+ml learning SVO, for example.

The trend in favour of default values with the non-incremental learner is what
we would predict, given the results summarized in Table 1 of section 4.1, which
show that there is a greater efficiency gain with default initial settings for most of
the languages tested for this acquisition procedure. The trend against some default
settings with the incremental learner is not so predictable and underlines the need
for this second type of experiment if the dynamics of such procedures are to be
thoroughly explored. The effect of maturational memory limitations is to decrease
fixation times and to (mostly) increase selection for default initial values, though
this is far less clearcut with the incremental acquisition procedure.

These experiments are somewhat artificial because the range of variation avail-
able for selection amongst acquisition procedures is very constrained. Therefore,
there is little to be gained by further (statistical) analysis of the results. Never-
theless, they demonstrate that the precise form of learner which emerges will be
very dependent on the environment of adaptation. Whilst genetic assimilation may
occur in a wide variety of scenarios, a SVO default learner is only likely to emerge
in the presence of some and not other dominant languages, and may even require
additional assumptions such as non-incremental memory-constrained learning.

7 Coevolution

The experiments of section 5 demonstrated evolution of language on a historical
timescale within a genetically-invariant population of LAgts. Those of section 6
demonstrated evolution of acquisition procedures, within circumscribed limits, with
maintenance of a single dominant language (see section 4.2). To demonstrate co-
evolution, it is necessary to allow the LAgt population to evolve and to allow a
significant degree of language change in the same run. LAgts’ initial p-settings were
varied by allowing mutation of a single element of a LAgt p-setting (with probability
0.05) during LAgt reproduction. Successful variant initial settings could then prop-
agate through the population via single-point crossover (with probability 0.9). This
allowed much less circumscribed evolution of initial p-settings than in section 6. In
addition, the parameter n which determined the number of updatable parameters
per trigger could mutate by +/— 1 with probability 0.05 during LAgt reproduction.
The full fitness function was used.

7.1 Coevolution without Migrations

In the first series of such experiments, the initial population were all unset n4 learner
adults speaking one of the clearly-attested full languages. Mutations can change a
principle to a parameter or vice-versa, alter the type of a parameter, or flip the value
of a principle or default parameter. Therefore, they could, in theory, introduce a
language variant by altering the value of a principle or default parameter. However
the degree of linguistic variation in such runs was typically minimal with populations
sampling around 5 closely-related full languages over 500 interaction cycles.

In these runs, the populations always evolved towards initial p-settings which
enhanced the learnability of the dominant language in the environment. Figure 25
shows mean LAgt fitness for one such population and also the relative proportions
of default parameters, unset parameters and principles in the same population. In
all such runs, the proportion of default parameters grew at the expense of unset
ones, with default values reflecting the language of the environment. In addition,
the mean number of updatable parameters per trigger fell until typically the whole
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Figure 25: Mean fitness and p-setting types during coevolution without migrations
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population converged on a value of 2 or 3, depending on the dominant language.
Consequently, LAgt fitness improved over the course of the run as a result of reduc-
tion in learning costs, whilst mean parsability, expressiveness and communicative
success remained roughly constant.

These results are clear evidence of genetic assimilation in which LAgts are evolv-
ing to be able to acquire the dominant language more effectively. Similar exper-
iments with the il learner with maturational memory limitations showed similar,
though less marked effects. By replacing unset with default parameters which have
initial settings compatible with the dominant language, the LAD is evolving an
accurate language-specific learning bias which simplifies the acquisition of this lan-
guage. At the same time, this bias itself will alter the relative learnability of other
languages. However, linguistic variation in these simulations is very limited, caused
only by occasional failures of convergence, mutations of default parameter values or
mutations of parameters to principles. Consequently, the rate of linguistic change
is very slow, creating a fairly constant selection pressure for genetic assimilation to
work on. As discussed in section 1.3, Deacon (1997) has argued that genetic assim-
ilation will not occur because, in practice, languages change faster than mutations
can go to fixation in a population.

7.2 Coevolution with Migrations

To see whether genetic assimilation would occur with maximal linguistic varia-
tion consonant with communicative success, a second series of experiments was run
identical to those described above, except that migrations occurred as often as was
compatible with mean 90% communicative success over the entire 1000 cycle run.
Figure 26 shows the relative proportions of default parameters, unset parameters
and principles for one such run with the population initialized to unset n4 memory-
constrained learners.

In these runs, LAgts still evolved LADs which improved learnability despite the
fact that typically the dominant language changes about 20 times and approximately
50 languages are sampled by the population. However, as in the run shown, there
was a greater tendency to replace unset parameters with principles rather than just
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with default parameters. Over 10 such runs, the proportion of unset parameters
always declined, by a mean 35% leading to around 50% of p-settings being principles
or default parameters with roughly an equal number of new principles and default
parameters. In other respects, results were identical to the first series of runs with
LAgt fitness improving as a consequence of reduced learning cost. However, the
greater degree of linguistic variation also allowed more linguistic selection for more
optimal languages.

The replacement of unset parameters by principles is an example of the type
of genetic assimilation which Pinker and Bloom (1990) envisage, in which the class
of learnable languages is (further) constrained by the LAD in the interests of en-
hanced learnability. Thus, in these runs we see examples of genetic assimilation of
both learning biases (defaults) and constraints (principles), albeit at a slower rate
than when the linguistic environment was more constant. To see how long genetic
assimilation would continue in a heterogeneous linguistic environment, several such
simulations with migrations were run for 10,000 cycles. In these, the mean de-
cline in the proportion of unset parameters was 55% with 65% of p-settings being
principles or parameters at the end of the runs. Once again approximately half of
the replaced unset parameters were default parameters. Plots of the proportions
of each type of parameter show an asymptotic rate of genetic assimilation for de-
fault parameters and principles. Finally, in similar runs with populations initialized
to reproduce learners with all default parameters with values appropriate to the
initial language, the population invariably evolved away from such ‘total’ genetic
assimilation towards p-settings containing some unset parameters. Therefore, we
can conclude that there is an upper limit to genetic assimilation in the face of such
linguistic variability.

7.3 Discussion

Why then is there (partial) genetic assimilation even in the face of great linguistic
heterogeneity and rapid linguistic change? And why, when change is rapid, is there a
greater tendency for the assimilation of principles as well as default initial parameter
values? Firstly, consider the possible mutations which can occur within a p-setting
and their expected fitness effects; Table 3 catalogues the possible transitions of
individual initial p-settings (which can be created by a single mutation) and their
expected fitness cost / benefit in terms of the ‘truth/falsity’ (T /F) of the resulting p-
setting value in the current linguistic environment. The fitness cost / benefit is based
on the expected effect on learnability. It is clear that any transition from a false
principle (i.e. one which is inconsistent with the current linguistic environment) will
incur a fitness benefit, because it will allow a LAgt a chance to learn the dominant
language. By contrast, a transition from a true principle to anything other than a
true default will have a learning cost because it will either render learning impossible
or increase the number of parameters to be updated. Likewise, no transition from a
true default creates any benefit and three incur a cost. Three transitions from a false
default incur learning benefit, only a transition to a false principle incurs a cost,
by making learning impossible. Transitions from unset parameters to true default
parameters or true principles are beneficial, whilst a false principle, as always, incurs
a (fatal) cost. The transition to a false default incurs no cost (or benefit) because
during learning it still takes one parameter update to obtain the correct value.

It should be clear from this discussion, that what we would expect to evolve is a
population with correct principles, predominantly correct default initial parameter
values, and possibly a minority of unset and/or default incorrect parameters. In an
unchanging linguistic environment, we would expect the population to eventually
fix on all true principles or default parameters. However, in all the experiments
reported above the linguistic environment is never entirely homogeneous or static.
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Old New
PS-Type P-value PS-Type P-value Expected Fitness
Absol F Def F f>
Absol F Def T f>
Absol F Absol T f>
Absol F Unset ? f>
Absol T Def F f<
Absol T Def T f=
Absol T Absol F f<
Absol T Unset ? f<
Def F Absol F f<
Def F Absol T f>
Def F Def T f>
Def F Unset ? f=
Def T Absol F f<
Def T Absol T f=
Def T Def F f<
Def T Unset ? f<
Unset ? Absol T f>
Unset ? Absol F f<
Unset ? Def T f>
Unset ? Def F f=

Table 3: P-setting Transitions and Fitness Effects

Therefore, the ‘truth/falsity’ of a p-setting is an approximation: a value may be
predominantly correct in the current environment given the dominant language,
but become predominantly or completely incorrect over succeeding cycles (and vice
versa). Whether an initially beneficial mutation achieves fixation, or even predomi-
nance, within the population will depend not only on the initial benefit it offers the
mutated LAgt, but also on the continuing benefit to its descendents. It is here that
coevolutionary effects will occur; for example, as a predominantly correct principle
spreads through the population, it will create greatly increased linguistic selection
for languages which obey this principle. This, in turn, will increase the chance
that the principle will go to fixation in the population, rendering languages which
do not obey the principle unlearnable. Similar reasoning applies to default-valued
parameters.

In a changing environment, we might expect there to be a preference for de-
fault parameters over absolute principles, because an initially predominantly cor-
rect principle which spread through a proportion of the population would incur a
high, possibly fatal, cost to them if it subsequently became (predominantly) incor-
rect. By contrast, a default parameter which becomes incorrect, incurs no more
cost than an unset parameter, given the acquisition procedure assumed in the cur-
rent simulation. There does appear to be a bias towards genetic assimilation of
default parameters in the experiments reported above with lowish rates of linguistic
change (see also section 4.3). The migration mechanism, used in the simulation
for introducing linguistic variation, tends to reinforce the status of principles which
have spread through more than 50% of the population and accelerate their fixation
(because it introduces adults with identical initial p-settings to those of the existing
majority). So, further experiments are needed to explore the degree of genetic as-
similation of principles as opposed to default parameters using different migration
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and learning mechanisms.

In the experiments reported above with mean 90% communicative success, the
fastest observed rate of change from one dominant language variant to another was
4 interaction cycles. The fastest observed rate at which a mutation in a p-setting
reached fixation was 43 cycles. This suggests that linguistic evolution of grammati-
cal parameters was only about one order of magnitude faster than ‘genetic’ evolution
of p-settings. Increasing the speed of linguistic change would have resulted in a de-
crease in communicative success below what is assumed reasonable in a language
community. Nevertheless, the simulation tells us nothing about the true relative
rates of linguistic and biological evolution — increasing the size of the population (in
the simulation or real world) would, for example, slow down biological evolution.
But, there can be no certainty about the size of the ancestor population in which the
LAD evolved. Deacon (1997:329) suggests that linguistic evolution is ‘many’ orders
of magnitude faster than biological evolution, arguing that languages can change
their major grammatical properties over thousands of years (historically, 1-2 mil-
lenia for the types of constituent order properties modelled here). However, the
time taken for a major grammatical change and the time taken for biological evolu-
tion will depend critically on population size, geographical dispersal, diffusion rates
of genes and of variant grammatical forms, and so forth. In the simulation runs
with rapid linguistic change, typically 2-3 major grammatical changes propagate
through the population every 50 interaction cycles. Therefore, default parameters
and absolute principles are being genetically assimilated and going to fixation in
the population typically in the face of several such major linguistic changes.

The key to understanding why genetic assimilation is still likely to occur, almost
regardless of the relative speed of change, is that the sample space of possible
grammars and associated languages is vastly larger than the number of grammars
which can be sampled by a population in the time taken for a principle or default
parameter to go to fixation. In the simulation, there are under 300 languages and
only 70 distinct full languages. Therefore, in the time taken for a p-setting to go
to fixation typically around 5% of the space of grammars might be sampled. This
means that 95% of the selection pressure for genetic assimilation of grammatical
information remains constant at any one time. In his discussion, Deacon (1997:329f)
ignores the issue of the space of grammatical possibilities and the degree to which
this can be sampled in the time required for biological evolution. It is impossible to
estimate the real size of this space properly, but few linguists would probably balk
at the idea that 30 independent binary grammatical parameters will be required
to capture the differences between the world’s languages in an account of universal
grammar. Given this, there are billions of distinct grammars to explore. This
guestimate is based on the existence of an evolved LAD. Prior to the emergence of
the LAD, the space of possible grammars would have been infinite. Rapid changes
in the tiny subset of potential grammatical systems which the ancestral linguistic
population was exposed to could not prevent genetic assimilation on the basis of the
many potential systems which were not sampled; perhaps, for example, all those
potential grammatical systems which would have resulted in arbitrarily intersecting
dependencies between constituents (see section 1.3).

8 Conclusions and Further Work

The model of the LAD and of an LAgt developed here extends work on grammat-
ical acquisition in the parameter setting framework in several ways. Firstly, the
partially-ordered parameter setting procedure described integrates a computation-
ally tractable and psychologically feasible algorithm with a more detailed account
of UG within the GCG framework. Secondly, this procedure has been shown to be
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effective experimentally on a more complex grammar / language set than has been
investigated in this framework hitherto. Thirdly, the effect of maturational memory
limitations (‘starting small’) has been shown to be largely irrelevant to convergence
for this class of consistent procedures. Fourthly, the criterion for retaining a pa-
rameter update has been shown to have marked effects on the overall behaviour of
the acquisition procedure. Fifthly, the coevolutionary experiments suggest that the
starting point of any acquisition procedure will not be arbitrary but will be informed
to some extent by the environment of adaptation for the LAD. This latter conclusion
is important in any assessment of the significance of learnability arguments which
assume arbitrary initial parameter configurations. Finally, embedding the model
of the LAD in a population of LAgts allows more precise study of predictions con-
cerning language change, in a manner analogous to Niyogi and Berwick (1997a,b).
Nevertheless, there are several ways in which this model of the LAD needs extending
and such extensions might undermine some of the conclusions above. The current
model does not account for noise or ambiguity of parameter expression in the input
to the learner. Such extensions are currently being developed, but might turn out
to be more sensitive to the effect of maturational memory limitations, for example.

In an answer to the question posed in section 1: how do often partially inaccurate
language learning biases arise and how pervasive are they in language acquisition?
The work reported suggests that genetic assimilation of information into the LAD
on the basis of the dominant languages in the environment of adaptation provides
a plausible answer. When LAgts’ p-settings can vary, under all experimental con-
ditions genetic assimilation of more ‘informative’ default parameters or absolute
constraints occurs. The general effect of genetic assimilation will be to build in as
much information concerning the linguistic environment as possible to make learn-
ing more efficient and robust. Thus, the idea that the LAD will incorporate bias
in the form of initial default-valued parameters, and indeed grammatical princi-
ples (e.g. Chomsky, 1981; Lightfoot, 1992) is broadly supported. Insofar as such
information is incorporated as absolute principles then, given the coevolutionary
scenario developed here, this has the effect of forcing languages to adapt to these
evolving constraints. However, insofar as such information takes the form of defea-
sible biases or preferences during learning, linguistic variants will be more or less
learnable depending on their compatibility with such biases. Therefore, we would
expect to see peripheral constructions and typologically rarer grammatical systems
which violate some of them. Similarly, the account predicts that assimilation will be
partial as a result of linguistic change during the period of adaptation. Bickerton’s
(e.g. 1984) Bioprogram Hypothesis, receives qualified support, if it is interpreted as
the claim that the LAD incorporates specific default parameters specifying a mini-
mal default SVO right-branching grammar, because this will only be the outcome of
genetic assimilation if the environment of adaptation for the LAD was dominated by
a language, or languages, with grammars (mostly) consistent with such defaults.??

The evolutionary simulation model demonstrates that embedding a generative

32The ranking of languages in terms of the WML parsability metric, in fact, does predict that
a right-branching SVO grammar might have been favoured at an early stage in grammatical
development when complex multiword NPs and subordinate clauses had developed, but before rules
of reordering had emerged, such as extraposition, scrambling, vl and v2. SVO and some variants
with a single left-branching construction are clustered at the top of this ranking, discounting
languages such as SOVv2 and VSOv1 and variants which involve these more complex reordering
mechanisms (which might plausibly have emerged as a later response to the apparently slightly less
optimal canonical SOV and VSO orders). However, the ranking which is used in the simulation
relies on taking the mean WML for the exemplar sentence types for each language. This makes
the implicit assumption that the (probabilistic) distribution of sentence types in interactions is
unbiased. This is true in the simulation but is manifestly not true of actual language use. Hawkins
(1994:180f), for instance, presents evidence that sentence types which severely tax parsing are used
rarely by speakers. Therefore, the predictions made by the WML ranking must be treated with
caution when assessing the ‘optimality’ of actual languages.
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model of the LAD in a changing population of LAgts leads naturally to an account of
language in which idiolects are well-defined stringsets, but languages are (complex)
adaptive systems. Linguistic selection is primarily a consequence of properties of
the LAD, and slight changes in the model of the LAD may create markedly different
selection pressures. The model of working memory load incorporated into the GCG
parser predicts that relative ease of parsability will be a factor in linguistic selection
under almost any assumptions about the impact of parsability on language learning
or use. The experiments on linguistic selection reported here underline the need for
natural selection for communicative success to maintain language in a population
capable of biological evolution. They, therefore, cast doubt on claims made, in the
context of simulations in which no biological evolution occurred (e.g. Kirby, 1996;
Steels, 1998), that linguistic selection alone is sufficient to explain the emergence
and subsequent evolution of language. Nevertheless, there are inadequacies in the
current simulation model which should be addressed; for example, the model of
expressiveness and its effect on language development is too crude and incapable of
supporting an account of the gradual accumulation of grammatical constructions.
Furthermore, the results reported here are relative to the specific choices made in
modelling the LAD.

Finally, it is important to consider whether any simulation model allowing evo-
lution of both LAgts and grammatical systems and conferring selective advantage to
communicating LAgts would not show (some) genetic assimilation. Mayley (1996)
demonstrates via a model and experiments that for genetic assimilation to occur
there must be correlation between neighbouring phenotypes, attainable through
lifetime adaptations, and their corresponding genotypes. In terms of the current
simulation model, there is considerable correlation between steps of the acquisi-
tion procedure to converge on a specific grammatical system (i.e. parameter up-
dates) and moves in genotype space representing biological evolution (i.e. changes
in LAgts’ initial p-settings) which reduce the number of learning steps. If, on the
other hand, any small improvement in the acquisition procedure with respect to any
target class of grammars required many changes at genotypic level (or vice-versa),
then genetic assimilation would be unlikely to occur, even with selective pressure
to learn language more efficiently.

Our current lack of knowledge of the neural basis of UG and parameter setting
and of its genetic basis does not allow a definitive answer to the question of cor-
relation. However, whilst the operations involved are no doubt very different from
their representation in the simulation model, if we assume that learning applies to
further specify a partial grammatical representation which itself is specified geneti-
cally, it is difficult to see how or why a highly uncorrelated genetic encoding of the
neural representation might evolve. Nevertheless, the question does highlight the
conditional nature of the conclusions which can be drawn from the results of any
such (simulation) model. Not only the assumptions behind the model but also the
many contingent, accidental or chance factors in the actual, but prehistoric, evo-
lution of language and its users may undermine the results. Nevertheless, models
of this type have heuristic value in guiding us towards hypotheses which can then
be further tested by other means; for example, claims about the effect of working
memory on parsing are testable, in principle, via psycholinguistic experimentation
or typological investigations, even though claims about the prehistoric development
of language are not. Furthermore, such models can be used to evaluate evolutionary
theorizing about language which does not utilize a simulation methodology and to
expose implicit and, perhaps, incorrect inferences or assumptions in such theorizing;
for example, in Deacon’s (1997:329) arguments from rapid relative linguistic change
to the implausibility of genetic assimilation of grammatical knowledge.
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