
Text2Action: Generative Adversarial Synthesis from Language to Action

Hyemin Ahn, Timothy Ha, Yunho Choi, Hwiyeon Yoo, and Songhwai Oh

Abstract— In this paper, we propose a generative model
which learns the relationship between language and human
action in order to generate a human action sequence given a
sentence describing human behavior. The proposed generative
model is a generative adversarial network (GAN), which is
based on the sequence to sequence (SEQ2SEQ) model. Using
the proposed generative network, we can synthesize various
actions for a robot or a virtual agent using a text encoder
recurrent neural network (RNN) and an action decoder RNN.
The proposed generative network is trained from 29,770 pairs of
actions and sentence annotations extracted from MSR-Video-to-
Text (MSR-VTT), a large-scale video dataset. We demonstrate
that the network can generate human-like actions which can
be transferred to a Baxter robot, such that the robot performs
an action based on a provided sentence. Results show that the
proposed generative network correctly models the relationship
between language and action and can generate a diverse set of
actions from the same sentence.

I. INTRODUCTION

“Any human activity is impregnated with language be-
cause it takes places in an environment that is build up
through language and as language” [1]. As such, human
behavior is deeply related to the natural language in our lives.
A human has the ability to perform an action correspond-
ing to a given sentence, and conversely one can verbally
understand the behavior of an observed person. If a robot
can also perform actions corresponding to a given language
description, it will make the interaction with robots easier.

Finding the link between language and action has been a
great interest in machine learning. There are datasets which
provide human whole body motions and corresponding word
or sentence annotations [2], [3]. In additions, there have
been attempts for learning the mapping between language
and human action [4], [5]. In [4], hidden Markov models
(HMMs) [6] is used to encode motion primitives and to
associate them with words. [5] used a sequence to sequence
(SEQ2SEQ) model [7] to learn the relationship between the
natural language and the human actions.

In this paper, we choose to use a generative adversarial
network (GAN) [8], which is a generative model, consisting
of a generator G and a discriminator D. G and D plays a
two-player minimax game, such that G tries to create more
realistic data that can fool D and D tries to differentiate
between the data generated by G and the real data. Based
on this adversarial training method, it has been shown that
GANs can synthesize realistic high-dimensional new data,
which is difficult to generate through manually designed

H. Ahn, T. Ha, Y. Choi, H. Yoo, and S. Oh are with the Department
of Electrical and Computer Engineering and ASRI, Seoul National Uni-
versity, Seoul, 08826, Korea (e-mail: {hyemin.ahn, timothy.ha, yunho.choi,
hwiyeon.yoo}@cpslab.snu.ac.kr, songhwai@snu.ac.kr).

Fig. 1. An overview of the proposed generative model. It is a generative
adversarial network [8] based on the sequence to sequence model [7], which
consists of a text encoder and an action decoder based on recurrent neural
networks [12]. When the RNN-based text encoder has processed the input
sentence into a feature vector, the RNN-based action decoder converts the
processed language features to corresponding human actions.

features. [9]–[11]. In addition, it has been proven that a GAN
has a unique solution, in which G captures the distribution
of the real data and D does not distinguish the real data from
the data generated from G [8]. Thanks to these features of
GANs, our experiment also shows that GANs can generate
more realistic action than the previous work [5].

The proposed generative model is a GAN based on the
SEQ2SEQ model. The objective of a SEQ2SEQ model is to
learn the relationship between the source sequence and the
target sequence, so that it can generate a sequence in the
target domain corresponding to the sequence in the input
domain [7]. As shown in Figure 1, the proposed model
consists of a text encoder and an action decoder based on
recurrent neural networks (RNNs) [12]. Since both sentences
and actions are sequences, a RNN is a suitable model for both
the text encoder and action decoder. The text encoder con-
verts an input sentence, a sequence of words, into a feature
vector. A set of processed feature vectors is transferred to
the action decoder, where actions corresponding to the input
sequence are generated. When decoding processed feature
vectors, we have used an attention mechanism based decoder
[13].

In order to train the proposed generative network, we have
chosen to use the MSR-Video to Text (MSR-VTT) dataset,
which contains web video clips with annotation texts [14].
Existing datasets [2], [3] are not suitable for our purpose
since videos are recorded in laboratory environments. One
remaining problem is that the MSR-VTT dataset does not
provide human pose information. Hence, for each video clip,
we have extracted a human upper body pose sequence using
the convolutional pose machine (CPM) [15]. Extracted 2D
poses are converted to 3D poses and used as our dataset [16].

ar
X

iv
:1

71
0.

05
29

8v
2 

 [
cs

.L
G

] 
 2

4 
O

ct
 2

01
7



(a) (b)

Fig. 2. The text encoder E, the generator G, and the discriminator D constituting the proposed generative model. The pair of E and G, and the pair
of E and D are SEQ2SEQ model composed of the RNN-based encoder and decoder. Each rectangular denotes the LSTM cell of the RNN. (a) The text
encoder E processes the set of word embedding vectors e = {e1, . . . eTi

} into its hidden states h = {h1, . . . hTi
}. The generator G takes h and decodes

it into the set of feature vectors c and samples the set of random noise vectors z = {z1, . . . zTo}. It receives c and z as inputs and generates the human
action sequence x = {x1, . . . xTo}. (b) After the text encoder E encodes the input sentence information into its hidden states h, the discriminator D also
takes h and decodes it into the set of feature vectors c. By taking c and x as inputs, D identifies whether x is real or fake.

We have gathered 29, 770 pairs of sentence descriptions and
action sequences, containing 3, 052 descriptions and 2, 211
actions. Each sentence description is paired with about 10 to
12 actions.

The remaining of the paper is constructed as follows.
The proposed Text2Action network is given in Section II.
Section III describes the structure of the proposed generative
model and implementation details. Section IV shows various
3D human like action sequences obtained from the proposed
generative network and discusses the result. In addition, we
demonstrate that a Baxter robot can generate the action based
on a provided sentence.

II. TEXT2ACTION NETWORK

Let w = {w1, . . . wTi} denote an input sentence composed
of Ti words. Here, wt ∈ Rd is the one-hot vector represen-
tation of the t th word, where d is the size of vocabulary.
In this paper, we encode w into e = {e1, . . . eTi

}, the
word embedding vectors for the sentence, based on the
word2vec model [17]. Here, et ∈ Rne is the word embedding
representation of wt, such that et = V wt, where V ∈ Rne×d

is the word embedding matrix. ne is the dimension of a word
embedding vector. With our dataset, we have pretrained V
based on the method presented in [17].

Since the proposed generative network is a GAN, it
consists of a generator G and a discriminator D as shown
in Figure 2. The objective of the generator G is to generate
a proper human action sequence corresponding to the input
embedding sentence representation e, and the objective of the
discriminator D is to differentiate the real actions from fake
actions considering the given sentence e. A text encoder, E,
encodes an embedded sentence, e, into its hidden states, h =
{h1, . . . hTi

}, such that h contains the processed information
related to e. Here, ht ∈ Rn and n is the dimension of the
hidden state.

Let x = {x1, . . . xTo
} denote an action sequence with To

pose vectors. Here, xt ∈ Rnx denotes the t th human pose
vector and nx is the dimension of a human pose vector.

The pair of the text encoder E and the generator G is
a SEQ2SEQ model. The generator G converts e into the
target human pose sequence x. In order to generate x, the
generator G decodes the hidden states h of E into a set
of language feature vectors c = {c1 . . . cTo

} based on the
attention mechanism [13]. Here, ct ∈ Rn denotes a feature
vector for generating the t th human pose xt and n is the
dimension of the feature vector ct, which is the same as the
dimension of ht.

In addition, a set of random noise vectors z =
{z1, . . . zTo} is provided to G, where zt ∈ Rnz is a random
noise vector from the zero-mean Gaussian distribution with
a unit variance and nz is the dimension of a random noise
vector. With a set of feature vectors c and a set of random
noise vectors z, the generator G synthesizes a corresponding
human action sequence x, such that G(z, c) = x (see
Figure 2(a)). Here, the first human pose input x0 is set to the
mean pose of all first human poses in the training dataset.

The objective of the discriminator is to differentiate the
x generated from G and the real human action data x. As
shown in Figure 2(b), it also decodes the hidden state h of
E into the set of language feature vectors c based on the
attention mechanism [13]. With a set of feature vectors c
and a human action sequence x as inputs, the discriminator
D determines whether x is fake or real considering c.
The output from the last RNN cell is the result of the
discriminator such that D(x, c) ∈ [0, 1] (see Figure 2(b)).
The discriminator returns 1 if the x is identified as real.

In order to train G and D, we use the value function
defined as follows [8]:

min
G

max
D

V (D,G) =Ex∼pdata(x)[logD(x, c)] (1)

+ Ez∼pz(z)[log(1−D(G(z, c)))]

G and D play a two-player minimax game on the value
function V (D,G), such that G tries to create more realistic
data that can fool D and D tries to differentiate between the
data generated by G and the real data.



III. NETWORK STRUCTURE

A. RNN-based Text Encoder
The RNN-based text encoder E shown in Figure 2 encodes

the input information e into its hidden states of the LSTM
cell [12]. Let us denote the hidden states of the text encoder
E as h = {h1, . . . , hTi

}, where

ht = qt(et, ht−1) ∈ Rn. (2)

Here, n is the dimension of the hidden state ht, and qt is
the nonlinear function in a LSTM cell operating as follows:

ht = qt[et, ht−1] = ot ◦ σ[Ct] (3)
e′t = We′et + be′ (4)
ot = σ[Woe

′
t + Uoht−1 + bo] (5)

Ct = ft ◦ Ct−1 + it ◦ σ[Wce
′
t + Ucht−1 + bc] (6)

ft = σ[Wfe
′
t + Ufht−1 + bf ] (7)

it = σ[Wie
′
t + Uiht−1 + bi] (8)

where ◦ denotes the element-wise production and the σ[x] =
1

1+e−x denotes the sigmoid function. The dimension of the
matrices and vectors are as follows: Wo, Wc, Wf , Wi, Uo,
Uc, Uf , Ui ∈ Rn×n, We′ ∈ Rn×ne , bo, bc, bf , bi ∈ Rn, and
be′ ∈ Rne .

B. Generator
After the text encoder E encodes e into its hidden states

h, the generator G decodes h into the set of feature vectors
c = {c1, . . . cTo

} based on the attention mechanism [13],
where ct ∈ Rn is calculated as follows:

ct =

To∑
i=1

αtihi. (9)

The weight αti of each feature hi is computed as

αti =
exp(βti)∑To

k=1 exp(βtk)
, (10)

where

βti = a[gt−1, hi] = v>a tanh[Wagt−1 + Uahi + ba]. (11)

Here, the dimensions of matrices and vectors are as follows:
Wa, Ua ∈ Rn×n, va, ba ∈ Rn.

After encoding the language feature c, a set of random
noise vectors z is provided to G. With c and z, the generator
G synthesizes a corresponding human action sequence x
such that G(z, c) = x. Let g = {g1, . . . gTo

} denote the
hidden states of the LSTM cells composing G. Each hidden
state of the LSTM cell gt ∈ Rn, where n is the dimension
of the hidden state, is computed as follows:

gt = γt[gt−1, xt−1, ct, zt]

= Wg(o
′
t ◦ C ′t) + Ugct +Hszt + bg (12)

o′t = σ[Wo′x
′
t + Uo′gt−1 + bo′ ] (13)

x′t = Wx′xt−1 + Ux′ct +Hx′zt + bx′ (14)
C ′t = f ′t ◦ C ′t−1 + i′t ◦ σ[Wc′x

′
t + Uc′gt−1 + bc′ ](15)

f ′t = σ[Wf ′x
′
t + Uf ′gt−1 + bf ′ ] (16)

i′t = σ[Wi′x
′
t + Ui′gt−1 + bi′ ] (17)

and the output pose at time t, is computed as

xt =Wxgt + bx (18)

The dimensions of matrices and vectors are as follows:
Wg , Wo′ , Wc′ , Wf ′ , Wi′ , Ug , Uo′ , Ux′ , Uc′ , Uf ′ , Ui′

∈ Rn×n, Wx′ ∈ Rn×nx , Wx ∈ Rnx×n, Hs, Hx′ ∈ Rn×nz ,
bg, bo′ , bx′ , bc′ , bf ′ , bi′ ∈ Rn, and bx ∈ Rnx . γt is the nonlin-
ear function constructed based on the attention mechanism
presented in [13].

C. Discriminator

The discriminator D also decodes h into the set of feature
vectors c based on the attention mechanism (see equations
(9)-(11)) [13]. The discriminator D takes c and x as inputs
and generates its scalar value result such that D(x, c) ∈
[0, 1] (see Figure 2(b)). It returns 1 if the input x has been
determined as the real data. Let d = {d1, . . . dTo} denote the
hidden states of the LSTM cell composing D, where dt ∈ Rn

and n is the dimension of the hidden state dt which is same
as the one of gt. The output of D is calculated from its last
hidden state as follows:

D(x, c) = σ[WddTo
+ bd],

where Wd ∈ R1×n, bd ∈ R. The hidden state of D is
computed as dt = γt[dt−1, xt, ct, wt] as similar in (12)-(17),
where wt ∈ Rnz is the zero vector instead of the random
vector zt such that wt = [0, . . . 0]>.

D. Implementation Details

The desired performance was not obtained properly when
we tried to train the entire network end-to-end. Therefore,
we pretrain the RNN-text encoder E first. Regarding this,
the text encoder E is trained by training an autoencoder
which learns the relationship between the natural language
and the human action as shown in Figure 3. This autoencoder
consists of the text-to-action encoder that maps the natural
language to the human action, and the action-to-text decoder
which reconstructs the human action back to the natural
language description. Both the text-to-action encoder and the
action-to-text decoder are SEQ2SEQ models based on the
attention mechanism [13].

The encoding part of the text-to-action encoder corre-
sponds to the text encoder E in our network, such that it
encodes e into its encoder’s hidden states h using (2)-(8).
Based on c (see (9)-(11)), the hidden states of its decoder
s = {s1, . . . sTo

} is calculated as st = γt[st−1, xt−1, ct, wt]
(see (12)-(17)), and x is generated (see (18)). Here, wt is
the zero vector instead of random vector such that wt =
[0, . . . 0]> ∈ Rnz .

The action-to-text decoder works on the similar princi-
ple as above. After its encoder encodes the human action
sequence x into its hidden states s = {s1, . . . , sTo

} (see
Figure 3), the decoding part of the action-to-text decoder
decodes s into the set of feature vectors c′ (see (9)-
(11)). Based on c′, the hidden states of its decoder h′ =
{h′1, . . . , h′Ti

}, is calculated as h′t = γt[h
′
t−1, e

′
t−1, c

′
t, wt].



Fig. 3. The overall structure of proposed network. First, we train an autoencoder which maps between the natural language and the human motion. Its
encoder maps the natural language to the human action, and decoder maps the human action to the natural language. After training this autoencoder, only
the encoder part is extracted in order to generate the conditional information related to the input sentence so that G and D can use.

(see (12)-(17)). From the hidden states h′ = {h′1, . . . h′Ti
},

the word embedding representation of the sentence e is
reconstructed as e′ = {e′1, . . . e′Ti

} (see (18)).
In order to train this autoencoder network, we have used

a loss function La defined as follows:

La(x, e) =
a1
To

To∑
t=1

‖xt − x̂t‖22 +
a2
Ti

Ti∑
t=1

‖et − e′t‖22 (19)

where x̂t denotes the resulted estimation value of xt. The
constants a1 and a2 are used to control how much the
estimation loss of the action sequence x1, . . . xTo

and the
reconstruction loss of the word embedding vector sequence
e1, . . . eTi

should be reduced.
Overall steps for training the proposed network are pre-

sented in Algorithm 1. After training the autoencoder net-
work, the part of the text encoder E is extracted and passed
to the generator G and discriminator D. In addition, in order
to make the training of G more stable, the weight matrices
and bias vectors of G that are shared with the autoencoder,
Wx, Wg , Wo′ , Wx′ , Wc, Wf ′ , Wi′ , Ug , Uo′ , Ux′ , Uc, Uf ′ ,
Ui′ , bx, bg , bo′ , bx′ , bc, bf ′ , bi′ , are initialized to trained
values. When training G and D with the GAN value function
shown in (1), we do not train the text encoder E. It is to
prevent the pretrained encoded language information from
being corrupted while training the network with the GAN
value function.

For training the autoencoder network, we set the number
of training epochs as 250 with batch size 32. The dimension
of its hidden state in LSTM cell is set to n = 256. The Adam

Algorithm 1 Training the Text-to-Action GAN
Input: a set of N input sentences {e1, . . . eN} and
N output action sequences {x1, . . .xN}, a number of
training batch steps S, batch size B.

1: Train the autoencoder between the language and action
2: Initialize the text encoder E with trained values
3: Initialize weight matrices and bias vectors of G that are

shared with the autoencoder to the trained values
4: for s = 1 . . . S do
5: Randomly sample {e1, . . . eB} and {x1, . . .xB}
6: Sample out the set of random vectors {z1, . . . zB}
7: Encode sets of feature vectors {c1, . . . cB}
8: Generate fake data {G(z1, c1), . . . G(zB , cB)}
9: for b = 1 . . . B do

10: yr(b)← D(xb, cb)
11: yf (b)← D

(
G(zb, cb), cb

)
12: end for
13: VD ← 1

B

∑B
b=1(log yr(b) + log(1− yf (b)))

14: D ← D + αD∂VD/∂D
15: VG ← 1

B

∑B
b=1 log yf (b)

16: G← G+ αG∂VG/∂G
17: end for

optimizer [18] is used to minimize the loss function La and
the learning rate is set to 5e− 5. For parameters a1 and a2
in the loss function La, we use a1 = 1 and a2 = 5. The
dimension of the hidden state in the LSTM cell composing
G and D is set to n = 256. The dimension of the random
vector zt ∈ Rnz is set to nz = 16, and it is sampled from



Fig. 4. The example dataset for the description ‘A woman is lifting
weights’. From the video of the MSR-VTT dataset, we extract the 2D human
pose based on the CPM [15]. Extracted 2D human poses are converted to
3D poses based on the code from [16]. The resulting 3D poses are used to
train the proposed network.

the Gaussian noise such that zt ∼ N (0, 1)16. In order to
train G and D, we set the number of epochs 400 with batch
size 32. The Adam optimizer [18] is used to maximize the
value function VD and VG, and each learning rate is set to
αD = 2e−6 and αG = 2e−6. All values of these parameters
are chosen empirically.

Regarding training the generator G, we choose to
maximize logD(G(z, c), c) rather than minimizing 1 −
logD(G(z, c), c) since it has been shown to be more ef-
fective in practice from many cases [8], [9].

IV. EXPERIMENT

A. Dataset

In order to train the proposed generative network, we use
a MSR-VTT dataset which provides Youtube video clips and
sentence annotations [14]. As shown in Figure 4, we have
extracted videos in which the human behavior is observed,
and extracted the upper body 2D pose of the observed person
through CPM [15]. Extracted 2D poses are converted to 3D
poses and used as our dataset [16]. (The dataset will be made
available publicly.) We choose to use only the upper body
pose rather than the full body pose, since the occlusion near
the lower body has been observed in the video considerably.
Another option was to use the data presented in [3], but there
are 6, 345 pairs of actions and sentence description, which
has been judged to be insufficient to train our network.

Each extracted upper body pose for time t is a 24-
dimensional vector such that xt ∈ R24. The 3D position of
the human neck, and other 3D vectors of seven other joints
compose the pose vector data xt (see Figure 5). Since sizes
of detected human poses are different, we have normalized
the joint vectors such that ‖vi‖2 = 1 for i = 1, . . . , 7 (see
Figure 5). For the poses extracted incorrectly, we manually
corrected the pose by hand. The corrected pose are then

Fig. 5. The illustration of how the extracted 3D human pose constructs
the pose vector data xt ∈ R24.

smoothed through Gaussian filtering. Each action sequence
is 3.2 seconds long, and the frame rate is 10 fps, making a
total of 32 frames for an action sequence.

Regarding the language annotations, there were some
annotations containing information that is not relevant to
the human action. For example, for a sentence ‘a man in
a brown jacket is addressing the camera while moving his
hands wildly’, we cannot know whether the man wears a
brown jacket or not with only human pose information. For
these cases, we manually correct the annotation to include
the information only related to the human action such that
‘a man is addressing the camera while moving his hands
wildly’.

In total, we have gathered 29, 770 pairs of sentence
descriptions and action sequences, which consists of 3, 052
descriptions and 2, 211 actions. Each sentence description
pairs with about 10 to 12 actions. The time length of total
action sequences is 2.713 hours. The number of words
included in the sentence description data is 21, 505, and the
size of vocabulary which makes up the data is 1, 627.

B. 3D Action Generation

We first examine how action sequences are generated when
a fixed sentence input and a different random noise vector
inputs are given to the trained network. Figure 6 shows
three actions generated with one sentence input and three
differently sampled random noise vector sequences such that
G(z1, c), G(z2, c), G(z3, c). Generated pose vector data xt
which contains p1, v1, . . . , v7 (see Figure 5) is fitted to the
human skeleton of a predetermined size. The input sentence
description is ‘A girl is dancing to the hip hop beat’, which
is not included in the training dataset. In this figure, human
poses in a rectangle represent the one action sequence, listed
in time order from left to right. The time interval between
the each pose is 0.5 second. It is interesting to note that
even though the same sentence input is given, varied human
actions are generated if the random vectors are different. In
addition, it is observed that generated motions are all taking
the action like dancing.

We also examine how the action sequence is generated
when the input random noise vector sequence z is fixed
and the sentence input information c varies. Figure 7 shows
three actions generated based on the one fixed random noise
vector sequence and three different sentence inputs such that



Fig. 6. Generated various 3D actions for ‘A girl is dancing to the hip hop beat’. z1, z2, and z3 denote the sampled different random noise vector
sequences for generating various actions.

Fig. 7. Generated actions when different input sentence is given as input. When generating these actions, the random noise vector sequence z is fixed
and the input feature vectors c are given differently to the generator G.

G(z, c1), G(z, c2), G(z, c3). Input sentences are ‘A woman
drinks a coffee’, ‘A muscular man exercises in the gym’, and
‘A chef is cooking a meal in the kitchen’. The disadvantage
of the given result is that it is difficult to understand the
concrete context by only seeing the action, since no tools
or background information related to the given action is
given. However, the first result in Figure 7 shows the action
sequence as if a human is lifting right hand and getting
close to the mouth as when drinking something (see the 5 th
frame). The second result shows the action sequence like a
human moving with a dumbbell in both hands. The last result
shows the action sequence as if a chef is cooking food in
the kitchen and trying a sample.

C. Comparison with [5]

In order to see the difference between our proposed
network and the network of [5], we have implemented the
network presented in [5] based on the Tensorflow and trained
it with our dataset. First, we compare generated actions when
we give the sentence ‘Woman dancing ballet with man’,
which is included in the training dataset, as an input to
the each network. The result of the comparison is shown
in Figure 8. The time interval between the each pose is
0.4 second. In this figure, results from both networks are

compared to the human action data that matches to the input
sentence in the training dataset. The result shows that our
generative model synthesizes the human action sequence that
is more similar to the data. Although the network presented
in [5] also generates the action as the ballet player with both
arms open, it is shown that the action sequence synthesized
by our network is more natural and similar to the data.

In addition, we give the sentence which is not included in
the training dataset as an input to each network. The result
of the comparison is shown in Figure 9. The time interval
between the each pose is 0.4 second. The given sentence is
‘A drunk woman is stumbling while lifting heavy weights’.
It is a combinations of two sentences included in the training
dataset, which are ‘A drunk woman stumbling’ and ‘Woman
is lifting heavy weights’. Although we know that it is difficult
to see the situation as described by the input sentence, this
experiment is to test whether the proposed network has
learned well about the relationship between natural language
and human action and responds flexibly to input sentences.
The action sequence generated from our network is like a
drunk woman staggering and lifting the weights, while the
action sequence generated from the network in [5] is just
like a person lifting weights.

It is shown that the method suggested in [5] also produces



Fig. 8. The result of comparison when the input sentence is ‘Woman dancing ballet with man’, which is included in the dataset. Each result is compared
with the human action data that corresponds to the input sentence in the training dataset.

Fig. 9. The result of comparison when the sentence which is not included in the dataset is given as an input. The input sentence given to the each network
is ‘A drunk woman is stumbling while lifting heavy weights’. This sentence is a combinations of ‘A drunk woman stumbling’ and ‘Woman is lifting heavy
weights’, which are included in the training dataset. The result shows that our proposed network generates the human action sequence corresponds to the
proper combinations of the two training data. The generated action sequence is like a drunk woman staggering and lifting the weights.

the human action sequence that seems somewhat correspond-
ing to the input sentence, however, the generated behaviors
are all symmetric and not as dynamic as the data. It is
because their loss function is designed to maximize the
likelihood of the data, whereas the data contains asymmetric
pose to the left or right. As an example of the ballet
movement shown in Figure 8, our training data may have
a left arm lifting action and a right arm lifting action to the
same sentence ‘Woman dancing ballet with man’. But with
the network that is trained to maximize the likelihood of the
entire data, a symmetric pose to lift both arms has a higher
likelihood and eventually become a solution of the network.
On the other hand, our network which is trained based on the
GAN value function (1) manages to generate various human

action sequences that look close to the training data.

D. Generated Action for a Baxter Robot

We enable a Baxter robot to execute the give action
trajectory defined in a 3D Cartesian coordinate system by
referring the code from [19]. Since the maximum speed
at which a Baxter robot can move its joint is limited,
we slow down the given action trajectory and apply it to
the robot. Figure 10 shows how the Baxter robot executes
the given 3D action trajectory corresponding to the input
sentence ‘A man is throwing something out’. Here, the time
difference between frames capturing the Baxter’s pose is
about 2 second. We can see that the generated 3D action



Fig. 10. Results of applying generated action sequence to the Baxter robot. The generated action sequence is applied to the Baxter robot based on the
Baxter-teleoperation code from [19]. The time difference between frames capturing Baxter’s pose is about 2 second.

takes the action as throwing something forward.

V. CONCLUSION

In this paper, we have proposed a generative model
based on the SEQ2SEQ model [7] and generative adversarial
network (GAN) [8], for enabling a robot to execute various
actions corresponding to an input language description. In
order to train the proposed network, we have used the
MSR-Video to Text dataset [14], which contains recorded
videos from real-world situations and uses a wider range
of words in the language description than other datasets.
Since the data do not contain 3D human pose information,
we have extracted the 2D upper body pose of the observed
person through convolutional pose machine [15]. Extracted
2D poses are converted to 3D poses and used as our dataset
[16]. The generated 3D action sequence is transferred to a
robot.

It is interesting to note that our generative model, which
is different from other existing related works in terms of
utilizing the advantages of the GAN, is able to generate
diverse behaviors when the input random vector sequence
changes. In addition, results show that our network can
generate an action sequence that is more dynamic and closer
to the actual data than the network presented presented in
[5]. The proposed generative model, which understands the
relationship between the human language and the action,
generates an action corresponding to the input language. We
believe that the proposed method can make actions by robots
more understandable to their users.

REFERENCES

[1] E. Ribes-Iñesta, “Human behavior as language: some thoughts on
wittgenstein,” Behavior and Philosophy, pp. 109–121, 2006.

[2] W. Takano and Y. Nakamura, “Symbolically structured database for
human whole body motions based on association between motion
symbols and motion words,” Robotics and Autonomous Systems,
vol. 66, pp. 75–85, 2015.

[3] M. Plappert, C. Mandery, and T. Asfour, “The kit motion-language
dataset,” Big data, vol. 4, no. 4, pp. 236–252, 2016.

[4] W. Takano and Y. Nakamura, “Statistical mutual conversion between
whole body motion primitives and linguistic sentences for human
motions,” The International Journal of Robotics Research, vol. 34,
no. 10, pp. 1314–1328, 2015.

[5] M. Plappert, C. Mandery, and T. Asfour, “Learning a bidirectional
mapping between human whole-body motion and natural language us-
ing deep recurrent neural networks,” arXiv preprint arXiv:1705.06400,
2017.

[6] S. R. Eddy, “Hidden markov models,” Current opinion in structural
biology, vol. 6, no. 3, pp. 361–365, 1996.

[7] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[9] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
“Generative adversarial text to image synthesis,” in Proc. of the 33rd
International Conference on International Conference on Machine
Learning-Volume 48. JMLR. org, 2016, pp. 1060–1069.

[10] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” arXiv
preprint arXiv:1609.04802, 2016.

[11] A. Dosovitskiy and T. Brox, “Generating images with perceptual
similarity metrics based on deep networks,” in Advances in Neural
Information Processing Systems, 2016, pp. 658–666.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton,
“Grammar as a foreign language,” in Advances in Neural Information
Processing Systems, 2015, pp. 2773–2781.

[14] J. Xu, T. Mei, T. Yao, and Y. Rui, “Msr-vtt: A large video description
dataset for bridging video and language,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
5288–5296.

[15] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional
pose machines,” in Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 4724–4732.

[16] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, and K. Daniilidis,
“Sparseness meets deepness: 3d human pose estimation from monoc-
ular video,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 4966–4975.

[17] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[18] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] P. Steadman. (2015) baxter-teleoperation. [Online]. Available: https:
//github.com/ptsteadman/baxter-teleoperation

https://github.com/ptsteadman/baxter-teleoperation
https://github.com/ptsteadman/baxter-teleoperation

	I Introduction
	II Text2Action Network
	III Network Structure
	III-A RNN-based Text Encoder
	III-B Generator
	III-C Discriminator
	III-D Implementation Details

	IV Experiment
	IV-A Dataset
	IV-B 3D Action Generation
	IV-C Comparison with KITrelated
	IV-D Generated Action for a Baxter Robot

	V Conclusion
	References

