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Capture, Integration, and Analysis of Digital
System Requirements with Conceptual Graphs

Walling R. Cyre, Member, IEEE

Abstract —Initial requirements for new digital systems and products that are generally expressed in a variety of notations including
diagrams and natural language can be automatically translated to a common knowledge representation for integration, for
consistency and completeness analysis, and for further automatic synthesis. In this paper, block diagrams, flowcharts, timing
diagrams, and English as used in specifying digital systems requirements are considered as examples of source notations for
system requirements. The knowledge representation selected for this work is a form of semantic networks called conceptual graphs.
For each source notation, a basis set of semantic primitives in terms of conceptual graphs is given, together with an algorithm for
automatically generating conceptual structures from the notation. The automatic generation of conceptual structures from English
presumes a restricted sublanguage of English and feedback to the author for verification of the interpretation. Mechanisms for
integrating the separate conceptual structures generated from individual requirements expressions using schemata are discussed,
and methods are illustrated for consistency and completeness analysis.

Index Terms —Design automation, knowledge acquisition, design representation, knowledge representation, nonmonotonic

reasoning, consistency analysis.

1 INTRODUCTION

R EQUIREMENTS for new products and systems are gener-
ally expressed in a variety of notations that include
natural language, diagrams, charts, and tables. While most
requirements documents include natural language text,
which other notations are employed depends on the type of
system or product and to some degree on the enterprise or
organization that is preparing the requirements. Although
some of the individuals that prepare a requirements docu-
ment may be trained in a variety of formal notations or lan-
guages, all individuals, particularly those having the
authority to approve or reject the requirements, are gener-
ally not fluent in formal notations, and so, requirements
include ‘universal’ but informal and ambiguous notations
such as natural language and diagrams.

A number of projects and systems have been reported for
diagrammatic capture of requirements, particularly in the
software engineering area. Hardware engineers have long
used block diagrams for capture of structural requirements.
More recently, several systems have been developed to sup-
port capture of behavioral requirements (or models). Process
models graphs [3] permit the designer to draw a set of con-
current processes and the signals by which they interact, but
the behavior itself must be entered as VHDL code. (The work
reported here will avoid this.) The SpecCharts Language [31]
is based on diagrams representing concurrent states and
their hierarchical decompositions, and are oriented towards
control-dominated systems. As with process model dia-
grams, the activities which occur within a state are specified
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in a formal hardware description language (VHDL sequential
statements). The STATEMATE approach [10] has become the
basis for a commercial system [17]. STATEMATE employs
a set of three languages State-Charts, Module-Charts, and
Activity-Charts to represent the control, structural, and func-
tional aspects of a system, respectively. An analysis of mulit-
view, software requirements using conceptual graphs with
actors and demons has been reported by Delugach [9]. The
notational systems he considers for representing require-
ments are dataflow diagrams, entity-relationship models,
state transition diagrams, and R-Spec graphs.

The goal of the effort reported here is to automatically
translate, evaluate, and interpret requirements expressed in
natural language and other common notations. The first
essential step is translation of the requirements from the
various source notations into a common notation so that
they may be integrated and analyzed automatically. The
notational systems selected for discussion in this paper are
natural language (English), block diagrams, flow charts,
and timing diagrams. These notations are well known and,
together with English, are widely used. For each source
notation, the essential concepts and relations that are ex-
pressible in the notation are identified, and an algorithm for
translating to the common notation is developed. For natu-
ral language, the range of concepts and relations has been
sharply curtailed to the domain of digital systems. Other
notations that have been looked at but are not discussed
here because of space limitations include state diagrams,
STATEMATE [10], Petri nets, entity-relation diagrams, and
dataflow diagrams. A broad selection of notations has been
chosen to expose the fundamental concepts and relations
used in hardware and software.

Once requirements are entered, translated, and integrated
the next step is analysis for completeness and consistency.
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In addition, graphical models are generated for require-
ments originating in English statements to serve as valida-
tion feedback to specification authors of the interpretations
of their statements [30]. VHDL engineering models may
also be generated from the integrated requirements [15] to
provide preliminary design input for further design re-
finement and subsequent high-level synthesis. The present
paper focuses on the capture, integration, and analysis of
specifications. (See also [6], [7].)

Because natural language is heavily involved in state-
ments of requirements, a knowledge representation form
that readily supports natural language understanding was
selected to be the common notation. This notation is a form
of semantic networks called conceptual graphs. While a
formalism currently used for design representation might
have been adopted as the medium for integrating require-
ments, most formalisms have been designed to represent a
limited repertoire of concepts and to support very specific
objectives, such as simulation, formal verification, or design
synthesis. In mapping information from natural language
to a design notation, some information (and all ambiguity)
would have to be discarded during translation and before
integration. Instead, it was decided to retain the maximum
information possible by using a knowledge representation,
allowing the integration of requirements derived from
more formal notations to resolve ambiguities.

While it is hoped that the results reported in this paper
will be broadly applicable, this study focused on specifica-
tions and requirements for digital systems. In the sections
which follow, conceptual graphs theory is introduced and
an overview of the types of concepts compiled for digital
systems requirements is given. Conceptual graph theory is
based on sets of graphs, called canonical graphs, which are
stipulated to be templates of meaningful relationships
among concepts in the domain of interest. Each notation
used in requirements documents uses a different set of ca-
nonical graphs called a canonical basis to express meaning.
While the canonical bases overlap strongly in the types of
concepts they are constructed from, the relations between
concepts vary significantly. For each component (sentence
or figure) of a requirements document, an appropriate
graph from the canonical basis is selected, instantiated, and
joined together to form a representation for the meaning of
that component. In this paper, canonical bases and algo-
rithms for generating conceptual graphs are described for a
representative set of source notations. Graphs for individ-
ual components are integrated by joining together the
graphs for components of a requirements document. A
method for performing this integration is given. A mecha-
nism that permits tentative integration is considered in or-
der to allow nonmonotonic reasoning through retraction of
concept associations which later prove untenable.

Either during the integration process or following inte-
gration, the conceptual graphs may be examined for certain
types of inconsistencies. In addition, the template nature of
the canonical graphs permits the analysis of requirements
for omissions by searching for unfilled slots in templates.

2 CONCEPTUAL GRAPHS

Conceptual graphs [28] provide a very useful tool for repre-
senting and combining knowledge or meaning. Their
power for representing meaning rests in their kinship with
semantic networks, while their power for reasoning is de-
rived from their origins in the formal logic (existential
graphs) of Peirce [22] and by formal mappings from con-
ceptual graphs to logic formulas.

A conceptual graph is a finite, connected, bipartite
graph consisting of a set of labeled concept nodes, a set of
labeled conceptual relation nodes, and a set of (directed)
arcs linking concept and relation nodes.

A conceptual graph consists of at least one concept node,
and every relation node is linked to at least one concept
node. Each node (concept or relation) has two labels: a type
label and a referent label. The set of concept node type la-
bels with the partial ordering, <, on them forms a lattice
called the type hierarchy, where L is the universal type and
is the absurd type. Similarly, a type hierarchy may be de-
fined on the set of conceptual relation type labels.

In the context of digital system requirements, general
concept types include the device type which embraces all
hardware elements including the subtype carrier. The car-
rier type is used for interconnecting devices such as wires
and buses. The value type covers the notions of data and
messages as well as software. The action type is assigned to
activities and processes which normally extend over a pe-
riod of time, whereas the type event is typically reserved
for discontinuities (beginnings, ends, and interruptions) in
actions. The type condition encompasses the notions of
status or mode as well as statives such as “x is greater than
or equal to y.” Concept types used in measurements include
time (of durations) and length (of data words).

Fig. 1 illustrates a partial hierarchy of the concept types
used in this paper for digital systems requirements. The
absurd type, L which is a subtype of every concept type is
not shown in this simplified figure. The type logic_memory
represents devices that contain both logic for data manipu-
lation and memory for storage of values. As shown, this
class of devices contains both processors and counters.

In this paper, a linear notation for conceptual graphs is
used. Concept nodes are denoted by two fields separated
by colons and enclosed by square brackets, [type : referent].
The first field contains the concept type label and the
second field contains a referent marker. The referent mark-
ers of concept nodes are used to associate concept nodes
with the individuals or abstractions they represent. Com-
mon forms of referent labels for concept nodes are shown in
Table 1. When the referent marker is absent, the node is
assumed to be generic.

Conceptual relation nodes also have two fields, (type:
referent), which are enclosed in parentheses. The referent
marker of a relation node is used here to contain the prepo-
sition indicating the relation if the graph was derived from
a natural language expression. (Most workers do not use a
referent field for conceptual relation nodes.)

A conceptual graph (in graphical form) representing the
statement “the device is reset by an interrupt” is denoted by
Graph ().
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Fig. 1. A partial hierarchy of concept types for digital systems.

TABLE 1
REFERENT MARKERS
Referent
Concept Form Example
[counter : #] generic a counter
[counter : *n] variable a counter
[counter : #4n778] individual the specific counter with
identifier #4n778

[counter : @7] measure seven counters
[counter : PC] named a counter named ‘PC’
[counter : {A, C, *}] collective a set of counters including

set AandC
[counter: {A|#47 | F} disjunctive one of the counters A, #47,

set orF
[counter : =] empty no counter exists
[condition : G] conceptual

graph
device:# reset ——I- interrupt:*

1)

This graph indicates that a specific (individual) device is
the object (obj) of the reset operation (an action) and some
(generic) interrupt event is the cause or agent (agnt) of the
action. The linear notation for this same graph appears as
Graph (2).
[reset] -
(agnt : by) -> [interrupt : *]
(obj) ->[device : #]. 2

In the linear form, only graphs having the form of trees can
be represented directly. Graphs having closed walks will
have multiple appearances of some concepts. When multi-
ple appearances of a concept are necessary, a common vari-
able denoted by a *n is placed in the referent field of each
appearance.

In some cases, it will be desirable to indicate possible
repetition of relations attached to a concept by the metalan-

guage symbols + and *. These symbols are not elements in
the denotation of conceptual graphs.

[computer] -

+ (part) ->[device],. (3a)

The + symbol preceding the part relation in Graph 3a indi-
cates that many part relations may be attached to a com-
puter concept. An asterisk indicates zero or more repeti-
tions as in (3b).

[string] —

*(part) - > [character].. (3b)

Conceptual relations, such as between which have more
than two incident arcs, are denoted with labeled arcs as
shown in Graph 4, where 1 and 2 are the arc labels.

[result : x] -> (between) —
1->[value : @5]
2 ->[value : @7],. 4)

This graph indicates that a result named x has a value be-
tween 5and 7.

Inverse relations are often encountered, and to simplify
the notation, an inverse relation will be denoted by a -1
following the name of the relation as in part-1. The two
graphs below are equivalent in representing that some de-
vice is the object of a reset action.

[device] -> (obj-1) -> [reset]. (5)

[reset] -> (obj) -> [device]. (6)

Integration of requirements that are represented as con-
ceptual graphs requires a set of operations which may be
applied to conceptual graphs to form new conceptual
graphs. The four canonical operations defined on con-
ceptual graphs are copy, restrict, join, and simplify. The
copy operation simply reproduces a graph. The restrict
operation is used to specialize a concept by replacing its
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type by a subtype if the concept is generic, or by replacing
a generic referent by an individual referent. For example,
[device] might be restricted to [counter: the B timer] in
Graph (5). The join operation unites two conceptual
graphs on matching concepts. For example, if G is Graph
(1), then the graph H = [action]->(manner)->[quickly] can
be restricted to

H’ = [reset] -> (manner) -> [quickly],
and then, join(G, H’) results in Graph (7) below.

[action : is reset] -
(agnt : by) -> [event : interrupt]
(obj) -> [device : the timer]
(manner) -> [quickly],. @

In joining nodes with set referents, the set union is taken for
collective sets, and the set intersection is taken for disunc-
tive sets. The final canonical operation, simplify, deletes
any redundant conceptual relations in a graph which re-
sulted from a join operation.

In addition to these elementary operations, some spe-
cialized join operations are useful. Two graphs can be
joined on multiple pairs of concepts by joining one pair at a
time and simplifying the result. A maximal join involves
the joining of a maximum number of pairs of concepts. A
relational join joins two relations and joins the corre-
sponding pairs of concepts adjacent to the relation.

A conceptual graph that is meaningful, or represents
something that is considered true in the domain of interest, is
called a canonical graph. The four conceptual graph opera-
tions defined above are called canonical formation operations
because they can be used to form new canonical graphs from
a set of canonical graphs, provided restriction operations
obey the type hierarchy and restricted referents conform to
their concept or relation type. A set of canonical graphs from
which all meaningful graphs in the domain of interest can be
formed by the canonical formation rules is called a canonical
basis. In these terms, each element or primitive in a notation
used in a requirements notation is mapped into a graph in a
canonical basis for the notation. A requirement, then, is rep-
resented by a canonical graph derived from the canonical
basis by applications of the canonical formation operations.

As shown later, additional graphs are sometimes needed
to integrate requirements derived from different canonical
basis. These graphs are called schemata and represent plau-
sible, expanded meanings of concepts. Since schemata de-
scribe typical usages of concepts, they are not unique and
a concept may have several schemata. A schema may be
defined in the form below, which gives a schema for the
program_counter concept type.

schema for program_counter(x) is
[counter : *x] -
(contain) -> [instruction_address: *a]
(agnt) -> [increment] -> (obj) ->
[instruction_address: *a]

(agnt) -> [load] -> (obj) ->
[instruction_address: *a]

(agnt) -> [clear] -> (obj) ->
[instruction_address: *a]

(part-1) -> [cpu].. ®)

where *x is the formal parameter or variable. This schema
states that a (possible) program counter contains an in-
struction address, which it can increment, load, or set to
zero, and that it is a part of a cpu. It should be noted that
this schema can also be applied for any other concept it
contains, such as cpu and instruction_address. This may
not be desirable in all cases, however. For example, the
schema includes the concept increment, but it is not rea-
sonable to conclude that every increment action is per-
formed by a program counter. A more reasonable schema
for increment is given as Graph (9). In a similar manner,
schemata for relations may be defined to facilitate integra-
tion of conceptual graphs.

schema for increment(x) is
[increment : *x] -
(agnt-1) -> [register]
(obj) -> [value: *v]
(contain) -> [value: *v],. 9)

Integration of conceptual graphs involves finding projec-
tions of subgraphs within other graphs. A projection, 11, is a
mapping of one conceptual graph, u, into another, v, such
that nv is a subgraph of v and for every concept c in u, TT is
in v and type(t) < type(c), if the referent of c is individual
then r is identical, and for every relation r in u, Tr is in v
and type(rr) = type(r). Although finding subgraphs is gen-
erally an NP-complete problem, in the present case the con-
ceptual graphs to be projected can be converted into trees
by replicating nodes. Mugnier and Chein [21] have shown
that finding projections of a conceptual tree into a concep-
tual graph is polynomial on the order O(cr), where c is the
number of concept nodes of the tree and r is the number of
relation nodes of the graph. In the present application, the
conceptual trees (subgraphs of schemata) are generally
quite small.

3 CAPTURE

The first step in the automatic evaluation and interpretation
of requirements is their capture, which consists of entry
and translation to conceptual graphs. Each source nota-
tion for requirements has an editor which supports the
entry of expressions of requirements. The difficult step is
the translation of source expressions to conceptual graphs,
particularly expressions in natural language. In the follow-
ing sections, a selection of notations used in requirements
and specification documents will be considered. The nota-
tions of block diagrams, flowcharts, timing diagrams and
natural language have been chosen here to provide a wide
span of semantics in the hardware and software domains.
For each of these notations, a canonical basis is proposed
and an algorithm for generating conceptual graphs from
expressions in these notations is described. After introduc-
ing the notations and their translation, the integration of
requirements using the formation operations and schemata
will be presented.

3.1 Block Diagrams

Block diagrams are frequently used to illustrate structural
requirements, such as how components are intercon-
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CYRE: CAPTURE, INTEGRATION, AND ANALYSIS OF DIGITAL SYSTEM REQUIREMENTS WITH CONCEPTUAL GRAPHS 5

nected or which are subcomponents (parts) of others.
Such diagrams can consist of four basic elements: blocks,
lines, attachments, and labels. The blocks depict hardware
components and therefore correspond to device type con-
cepts. Lines or arrows typically indicate interconnections,
which correspond to carrier concepts. (In the nomencla-
ture of schematic diagrams, carriers are generally called
nets.) The points of incidence between lines and blocks, or
attachments, constitute the third basic element of block
diagrams. These incidence points are called ports, and are
mapped into a third basic type of concept. Physically,
ports may be associated with pins, and each port may
represent one pin or a vector of pins. Directions of infor-
mation transfer are typically associated with ports (input
ports and output ports), but to be more precise here, the
direction of transfer will be represented by a conceptual
relation between the port and the device it is attached to.
These attachment relations are listed in Table 2. For ex-
ample, an input pin of a device has an input relation (<<)
between the device and the port, as in [device] -> (<<) ->
[port]. Directionality may be fully (<<, >>, <>) or partially
(<-, ->) specified. The relation (-) indicates an attachment
with no specification of directionality, and (<>) specifies
a bidirectional relations such as between all ports and
carriers.

TABLE 2
BLoCK DIAGRAM ATTACHMENT RELATIONS
symbol relation
- attachment, direction unspecified
<- input and possibly output
-> output and possibly input
<< input only
>> output only
<> bidirectional

These six conceptual relations between devices and ports
obey the type hierarchy shown in Fig. 2.

(--)
(=-) (-

N S

(=) (=) ()

Fig. 2. Hierarchy of directionality relations.

Since the connection of a carrier to a port of a device is
nondirectional, the bidirectional relation (<>) is used to
denote attachments of carriers to ports. The canonical basis
for block diagrams consists of two conceptual graphs.
Graph (10) is the canonical graph for a device and con-
sists of one device concept and one or more ports. The
nondirectionality of the attachment relation is expected
to be restricted when the graph is instantiated in a
requirement.

[device] -
+(-) -> [port],. (10)

The canonical graph for a carrier is given as Graph (11). A
carrier typically connects two or more devices, so an iso-
lated carrier should not occur. By limiting the canonical
graphs in this way, some requirements errors can be elimi-
nated during the translation process by not accepting some
constructs in the source notation.

[carrier] -

+(<>) -> [port] <- (-) <- [device]  (11)

In addition, the form of Graph (11) is useful in translating
netlists, a common representation of block diagrams, to ca-
nonical graphs. Netlists can be derived automatically from
block diagrams by schematic capture tools used in design
automation. The Electronic Design Interchange Format
(EDIF) is a standardized netlist form [29]. In the LISP-like
format of EDIF, each construct is enclosed in parentheses and
consists of a keyword followed by a list of parameter values
or constructs, as (cellRef A) declares that A is the identifier of
a type of device (a cell). An algorithm for deriving a concep-
tual graph from a (simplified) EDIF representation is given
below. A number of mandatory format levels of EDIF have
been left out here to simplify the present discussion.

Algorithm: Conceptual Graphs from EDIF Netlists

1) a) For (cell A (interface (port P (direction D))))
generate [A] -> (D) -> [port : P]
b) For (instance X (cellRef A))
generate [A: X]
¢) For (net C (joined (portRef Pi (instance Xj))))
generate [carrier : C] -> (<>) -> [port : Pi] <- (- -)
<- [device : X]]

2) Restrict each device concept in a carrier conceptual
graph generated by 1c) to the type specified in the
device’s instance declaration.

3) Restrict each relation between a port and device in a
carrier conceptual graph by 1c) to the directional
type specified in the device’s cell declaration.

4) Join the individual graphs generated from the netlist
and simplify the result.

The first step of the algorithm generates all the concepts
(devices, carriers, and ports) and their interrelationships.
The second step restricts the general type device in nets to
the subtype identified in the instance declaration, and the
third step restricts the relations between devices and ports
to the directionality specified in the cell declaration. With
this preparation, the device graphs and carrier graphs will
join properly on identical device-relation-port subgraphs.
Redundant copies of relations are then eliminated by the
simplify operation.

The above accounts for the interconnections in a block
diagram but does not account for the hierarchical composi-
tion of devices by their components. Graph (12) is the basis
graph for accommodating this information by showing that
a device has zero or more components related to it by a

conceptual relation of type part.
[device] -
*(part) ->[device],. (12)

Containment information is also included in netlist nota-
tions, such as EDIF, through recursive data structures.
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6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 1, FEBRUARY 1997

Whenever a device is declared in the beginning of a netlist,
its substructure as well as its ports may be declared. This
substructure is readily captured by instantiating Graph (12)
in an expanded form of the preceding algorithm.

3.2 Flowcharts

Although flowcharts of programs and protocols are
graphically similar to block diagrams and can employ the
EDIF notation for their machine representation, they are
semantically very different and, therefore, require a dis-
tinct canonical basis. The primary semantic elements of
flowcharts are processes (rectangles), terminals (rounded
rectangles), decisions (diamonds), and flowlines. In the
present discussion, it is assumed that flowcharts describe
only uniprocessing situations and are, therefore, free of
parallel lines of computation. The process blocks of flow
charts are readily modeled by action concepts. Flowlines
may have any number of sources (antecedent processes)
but only one destination process (consequent process). It
is further assumed that an antecedent process finishes
when the consequent process starts, so the conceptual
relation holding between two such processes is fin-
ishes_when_starts (fws) as in [action] -> (fws) -> [action].
To facilitate integration with graphs from other notations,
however, it is preferable to use the inverse relation
starts_when_finishes (swf) in the canonical basis for
flowcharts since this is more consistent with English ex-
pressions of temporal relations. The canonical graph for a
simple flowline appears as Graph (13a), where action_2 is
the antecedent process and action_1 is the consequent
process.

[action_1] -> (swf) ->[action_2]. (13a)

Flowlines having multiple sources, such as occur with loops
and reconvergence of flow paths after decisions, are or-joins
of flowlines, and require the introduction of a disjunctive
action concept as in Graph (13b). Action_2 in this graph
represents either action_3 or action_4. Note that the or rela-
tion here is ternary, and similar canonical graphs are
needed to cover flowlines having various numbers of
sources.

[action_1] -> (swf) ->
[action_2] -> (or) -
1 ->[action_3]

2 ->[action_4].. (13b)

Semantic modeling of decisions in flowcharts is more com-
plex. Although the graph [action] —> (swf) —> [decision]
might be considered in representing decisions in flow-
charts, this does not readily accommodate expression of the
decision outcome associated with the flowline. The decision
outcome could be placed in a referent field of the swf rela-
tion, but this does not integrate easily with graphs from
other notational sources. Instead, a decision here is viewed
as a set of flowlines which pass through the decision sym-
bol; each flowline is associated with an outcome of the deci-
sion. Therefore, a flowline passing through a decision will
be related to one antecedent action and one condition, as
well as the consequent process. The condition concept rep-
resents the outcome of the test which enables the conse-
guent process.

[action_1] -> (swfif) -
1-> [action_2]

2 -> [condition],. (14)

The core of this canonical graph is the starts_when_finished_if
(swfif) relation which is interpreted: action_1 starts when
action_2 finishes if the condition is true. In many cases, de-
cisions are labeled by a variable inside the diamond, and a
value for the variable on each flowline passing out of the
decision. Such conditions are captured by canonical graph
(15). Relations such as greater than of equal, less than, and
the like may also be used to express conditions. Condition
concepts can accept entire conceptual graphs as their refer-
ents, that is, a condition concept refers to a conceptual
graph like (15) as illustrated by Graph (16).

[variable] -> (=) -> [value].
[condition : [variable : F] -> (=) -> [value : True]].

(15)
(16)

When a flowline passes through a sequence of decisions,
the enabling condition is the conjunction (AND) of the in-
dividual conditions. This may be represented using part
relations for an AND conjunction as in Graph (17).

[condition] -
(part) -> [condition]

(part) -> [condition],. a7

Although terminals often only denote continuations of flow-
lines in partitions on flowcharts, they may also serve to iden-
tify the first and last subprocesses that are executed as part
of an encompassing process. Therefore, as entry and exit
points it is useful to model terminals by attaching unary con-
ceptual relations on the subprocesses that are entered into
or exited from. To support this the following two graphs
are added to the canonical basis. Note that the entry and
exit terminals are expected to have identifiers, #t, to fill the
referent positions in the entry and exit conceptual relations.

(18)

[1: action] -> (exit: #t). (29
The final graph of the conceptual basis for flowcharts sup-
ports the joining of disconnected flowcharts, by establishing

swf relations between processes whose connecting flow-
lines are interrupted by terminals.

[1: action] -> (entry: #t).

[action] -
(entry : *t)

(swf) -> [action] -> (exit : *t),. (20)

The algorithm given here for generating conceptual graphs
to represent flowcharts, first requires expanding each deci-
sion into an exhaustive collection of condition-labeled
flowlines between processes, and then expanding all multi-
ple flowlines. Then, a basic canonical graph can be gener-
ated from each flowline, and these conceptual graphs can
be integrated by join operations. Finally, flowlines inter-
rupted by terminals can be completed by searching for pos-
sible joins using Graph (20).

Algorithm: Conceptual Graphs from Flowcharts

1) Treating Decisions:
a) Replace every IF-THEN decision by two condition-
labeled flowlines.
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CYRE: CAPTURE, INTEGRATION, AND ANALYSIS OF DIGITAL SYSTEM REQUIREMENTS WITH CONCEPTUAL GRAPHS 7

Replace every n-way CASE decision by n condition-
labeled flowlines.

b) Generate a condition graph, Graph (15), from each
flowline condition label, also using Graph (17) where
flowlines are labeled by multiple conditions.

2) Treating Flowlines:

a) For every unconditional flowline between two apply
Graph (13a).

For every multiple-source unconditional flowline,
apply Graph (13b) or a graph with a suitable (or)
relation.

For every conditional flowline between two pro-
cesses, apply Graph (14) using the condition graph
as the referent of the condition concept in Graph (14).

b) For every flowline staring from an entry terminal,
label the destination action concept by an entry con-
cept with that label as its referent.

For every flowline terminating in an exit terminal,
label the source action concept by an exit concept
with that label as its referent.

¢) Join Graph (20) with every pair of processes having
respective exit and entry terminals with the same
referents.

Since flowcharts are readily modeled as graphs, any
graph search procedure for cyclic graphs can be used to
examine all elements of a flowchart. As each decision or
flowline is examined, the algorithm above is applied to
generate the conceptual graph. This algorithm deals with a
common style of flowcharting. Other flowchart styles may
require modification of the canonical basis as well as the
algorithm.

3.3 Timing Diagrams
Timing diagrams are often used in requirements and
specifications to illustrate system behavior in the form of
simulation results (although the simulation is generally
performed mentally). A timing diagram consists of a set
of parallel timelines, each associated with a particular
carrier (line or bus). Each timeline is partitioned into in-
tervals during which a value (obj) is applied to the car-
rier (destination) by some device (instrument) attached
to the carrier. (The value applied to the carrier may be
indeterminate or undefined.) Each interval on a timeline
can be represented by a concept node. To permit the in-
terval to be identified with a carrier, a device, a value,
and a duration (dur), the type definition below may be
used.
type interval(x) is
[apply : *X] -

(inst) -> [device]

(obj) -> [value]

(dest) -> [carrier]

(dur) -> [time].. (21)

When a timing diagram is viewed as a parallel set of
sequences of intervals, temporal relations from systems of
interval temporal logic [2], [11], [20] can be employed as
conceptual relations between the intervals. The interval
relations used here are the endpoint relations defined by
Matuszek, which are used to define the temporal relations

between the endpoints (beginnings and ends) of pairs of
intervals. The set of seven endpoint relations (with their
inverses) listed Table 3 are adequate for describing timing
diagrams.

TABLE 3
TEMPORAL INTERVAL RELATIONS
Inverse
Endpoint Relation Conceptual Graph Relation
starts before starts [interval] -> (sbs) -> [interval]  sas
starts when starts [interval] -> (sws) -> [interval]  sws

starts before finishes
starts when finishes
finishes before starts
finishes before finishes
finishes when finishes

[interval] -> (sbf) -> [interval]  fas
[interval] -> (swf) -> [interval]  fws
[interval] -> (fbs) -> [interval] saf
[interval] -> (fbf) -> [interval] faf
[interval] -> (fwf) -> [interval] fwf

As an example, if interval x starts before interval y fin-
ishes, [x] —> (sbf) —> [y], then the inverse is true, i.e. interval
y finishes after interval x starts, [y] —> (fas) —> [x]. Two of
the above relations (sws and fwf) are self-inverses. Note in
particular that the starts_when_finished (swf) conceptual
relation is the same one used in generating conceptual
graphs from the flowlines of flowcharts. This will be of use
in integrating requirements from flowcharts and timing
diagrams.

Generating conceptual graphs from timing diagrams
using a larger set of temporal relations has been de-
scribed [8] in some detail in another paper, so a simpli-
fied but adequate generation algorithm is presented here
for this set of relations. This algorithm is less efficient
and generates more relation nodes in the resulting graph.
The present generation algorithm depends on analyzing
the configuration of intervals at points in the timing dia-
gram where at least one interval ends (and necessarily
another begins). Consider one such event, e, in a timing
diagram. Three sets of intervals can be defined with re-
spect to this event. Let F denote the set of intervals that
finish at the event. Let S denote the set of intervals that
start at the event, and finally, let set C contain the inter-
vals that continue through the event without interrup-
tion. It may be noted that |F] = |S], IFI+IC] = |S]
+]C] = n, where n is the number of timelines. (]Q| de-
notes the cardinality of set Q.) Table 4 shows the canoni-
cal graphs that describe configurations of pairs of inter-
vals from these three sets. For example, when one inter-
val is taken from S (starts at e€) and the second interval
continues through the event (is in set C), then Graph
(22d) is generated.

The graphs in Table 4 together with Graph (21) form the
canonical basis for timing diagrams. An algorithm for gen-
erating conceptual graphs from timing diagrams is given
below.

Algorithm: Conceptual Graphs from Timing Diagrams

1) Let C initially contain every interval that begins a
timeline. Let F and S be empty.
Let G be the empty graph.
2) For every interval i 0 C join [interval : i] to G.
3) For every event, e, along the timing diagram
Let F contain the intervals that finish at e,
Let S contain the intervals that start at e,
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TABLE 4
CANONICAL GRAPHS FOR TIMING DIAGRAMS
Intervals Canonical Graphs
e [Interval : x] -
xeF . S (twD)->[Interval ; *y]
(fas»>[Interval : #y]  (22a)
veF R S (shr>[Interval : *y]
[Interval : x] -
xeF X2 g (hty>[Interval : *y]
¥y € [ (fas)>[Interval : *y] (22]))
i A (shf»=[Interval : *y]
[Interval : x] -
xeF x © {tws)-»[Interval : *¥]
o — (shs)+[Interval : *¥y] (22‘3)
vES ¥y {hi)>[Interval ; *¥]
(shf)->[Interval : *¥]
€ X [Interval : x] -
XES —_ tasy>interal 53]y )
yeC s ¥y ... (sas)y=[Interval : *y]
(shf)y>[Interval : *¥]
€ x [Interval : x] -
X €S — - (sws)->[Interval : *y]
vES ¥ (fas)»[Interval : *y] (22e)
- {zh)y>[ Interval : =¥]

LetC=C-F.
For x O S, join [interval : x] to G,
For x O F, y OF, x #Y, generate Graph (22a) and
jointo G,

For x O F, y OC, generate Graph (22b) and join to G,
For x OF, y O, generate Graph (22c) and join to G,
Forx 0 S,y O C, generate Graph (22d) and join to G,
Forx S,y OS, x#Y, generate Graph (22e) and
jointo G,

4) Simplify G.

5) Repeat Steps 2 and 3 until all events have been

scanned.
6) Expand each interval concept in G using Graph (21).

This algorithm is not highly efficient since multiple
copies of relations may be introduced and later eliminated
in Step 4, but the algorithm will capture the necessary
relationships. To keep the conceptual graphs generated by
this algorithm fairly sparse, the algorithm does not calcu-
late the endpoint relationships between all pairs of inter-
vals in a timing diagram. Relationships between other
pairs of intervals can be computed using transitivity ta-
bles reported elsewhere [2], [8], [11], [20]. For example, if
[X] -> (fbf) -> [y] and [y] -> (fws) -> [z], then it is true that
[x] -> (fbs) -> [z].

Timing diagrams often have annotations indicating de-
lays or durations between events. As shown in [8], such
annotations can be captured in conceptual graphs using
additional conceptual relations. For example, let (safby)

represent the ternary relation starts_after_finishes_by as in
Graph (23), which indicates that interval x starts after inter-
val y finishes by t seconds.

[interval : x] -> (sashy)
1->Jinterval : y]
2 -> [time : t seconds],. (23)

3.4 Natural Language

The bulk of many requirements documents, contracts
and proposals consists of natural language expressions.
While the automatic analysis of standard or free English
is a major unsolved problem, progress has been made in
the analysis of sublanguages of English [18] which have
a limited vocabulary and grammar and cover a restricted
semantic domain. Semantic domains which have re-
ceived substantial attention include those characterized
by medical reports, legal documents, message systems,
and news reports. Relatively little effort has been in-
vested in the automatic analysis of specifications on
digital systems, and much of that has been focused on
executable software specifications and natural language
programming. An important example of the automatic
analysis of natural language specifications on digital
systems is the work by Granacki and Parker [13], which
employed semantic patterns (a semantic grammar [4]) in
a phrasal analyzer called PHRAN to generate conceptual
dependency structures [25] from English sentences. The
conceptual dependencies were then transformed into

J:\PRODUCTION\TKDE\2-INPROD\K96092\K96092_1.DOC

| trans-96.dot | cG | 19,968

| 12120196 11:43am | 8716 |



CYRE: CAPTURE, INTEGRATION, AND ANALYSIS OF DIGITAL SYSTEM REQUIREMENTS WITH CONCEPTUAL GRAPHS 9

formal specifications expressed in a design data structure
(DDS) [19] was then generated from by a specification
analyzer (SPAN). The conceptual dependency structures
served the role of conceptual graphs in the present ap-
proach. Conceptual dependency theory is a strong slot
and filler structure [24] with a small set of primitives,
whereas conceptual graphs are a weak slot and filler
structure with a large canonical basis. As a result of
having a small canonical basis, representations in con-
ceptual dependencies can become quite complex because
everything must be decomposed in to a small set of sim-
ple primitives, whereas, the large canonical basis used in
conceptual graph theory affords more economical repre-
sentations. This is an important consideration in sub-
graph searches to perform integration of representations.

The approach described in this paper employs compo-
sitional semantics. First, syntax analysis of requirements
statements is performed by a parser. The resultant parse
trees are then passed through a semantic analyzer. Syn-
tax analysis is performed by a bottom-up parallel chart
parser [1], [32] with a phrase-structured grammar. This
grammar has little more than a hundred rules, but is rich
enough to accept complex sentences such as the ones
listed below.

In limiting the grammar rules, selections have been
made to eliminate some of the more troublesome con-
structions used in standard English. For example, the use
of conjunctions has been restricted, and since interroga-
tive (question) and imperative (command) sentences do
not occur in specifications, these are not covered by the
grammar. The sublanguage used in specifications does
have some constructions that are not generally used in
standard English, such as using the infinitive forms of
verbs as nouns, as in “a subsequent write to memory by
the processor.” Normally, this would be expressed using
a gerund as in “a subsequent writing to memory by the
processor.” Because even this restricted sublanguage of
English is ambiguous, the parser will produce one or
more parse trees for each sentence accepted by the
grammar. In each parse tree, the leaves of the tree are the
terminals (words) of the language, and the remaining
nodes represent grammatical constructs such as noun
phrases, verb phrases and clauses. The root of a tree rep-
resents the sentence construct.

TABLE 5
EXAMPLE REQUIREMENTS SENTENCES
Stacking the cpu registers, setting the low bit and vector fetching requires
a total of 11 tcyc periods for completion.
The remaining cpu registers are not pushed onto the stack.
The machine can perform a read or write asynchronously if the W/R
signal is high.
The -int pin can also be polled with branch instructions.

The 8048 has 27 lines which can be used for input functions or output
functions.

The 8-bit data is loaded into the -acc register when -strb rises.
Buffen is high when -ds1 is high and -nds2 is low.
The data in -acc is applied to -do when buffen is high.

TABLE 6

CONCEPTUAL RELATIONS FOR ACTION AND EVENT GRAPHS

acc accompaniment

agnt agent

attr attribute

dest destination

inst instrument

man manner

obj object

ord ordinal

purp purpose

quant quantity

src source

The function of the semantic analyzer is to select the
most meaningful parse tree if more than one occurs, and to
generate a conceptual graph that reflects the meaning of the
sentence. Each word carries meaning or performs a func-
tion which is represented by one or more conceptual graphs
in the canonical basis. Because some words are synonyms
of others (clear, reset) and several forms may have the same
basic meaning (write, writes, writing, written) the canonical
basis for English will be large, but not unmanageable. Some
words have more than one meaning, but unlike general
English in which most words have several meanings, most
words in requirements have only one or two meanings re-
sulting in a relatively small canonical basis. Examples of can-
onical graphs for a few English words will be introduced as
needed in the following discussions. A selection of con-
ceptual relations used in the conceptual basis for English is
tabulated below. These conceptual relations for actions and
events are based on the case frames by Fillmore [12].

The algorithm for semantic analysis described here is
similar to that reported by Sowa and Way [27]. For a given
parse tree of a sentence, each leaf of the parse tree corre-
sponds with a sentence word and is replaced by the word’s
canonical graph from the basis. Unrecognized character
strings are interpreted as names (identifiers or acronyms).
In each of these canonical graphs one concept is called the
head concept of the graph, generally the concept most
closely associated with the sentence word. For each nonleaf
node, a conceptual graph is constructed from the graphs
associated with its daughter nodes in the tree. One of the
daughter nodes is considered the head and the remainder
are considered to be modifiers. First, the head node’s con-
ceptual graph is raised to the current node, and its head
concept becomes the head concept of the current node.
Next, the graph of each modifier is attached to the current
node’s graph. In a data base, a semantic analysis rule exists
for each grammar rule. Since each nonterminal node of a
parse tree is generated by a grammar rule, the associated
semantic analysis rule is chosen to identify the head
daughter node and to govern the joining of modifier graphs
to the head graph. For example consider semantic analysis
of the noun phrase “the synchronous counter” represented
by the subtree (np (det the) (adj synchronous) (noun
counter)) where the canonical basis includes the following
three graphs:

The i80486 contai h d the [T #. (24)
el contains a cache, processor and co-processor. .
) P P synchronous [device] -> (attr) -> [synchronous] (25)
Resetting before the system stops deletes the startup program.
counter [counter]. (26)
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The noun is the head node of this noun phrase so Graph
(26) is raised to the noun phrase node. Next, the canonical
graph for “the” is joined to the graph for counter producing
(27). In order to perform this join, the universal type T must
be restricted to the subtype counter. Note that this referent
indicates that a specific individual is referred to but the in-
dividual’s identifier is not given.

[counter: #]. 27

Then, the canonical graph for “synchronous” (25) is re-
trieved and joined with the current graph (26) after re-
stricting device to counter, resulting in Graph (28).

[counter: #] -> (attr) -> [synchronous]. (28)

This example was quite straightforward, but the semantic
analysis rules for some grammatical constructs can be quite
complex, and may be sensitive to the concept types of the
head and modifier concepts. As a more complex example,
consider the grammatical predicate “writes data to mem-
ory” having the subtree (pred (active_verb writes) (noun
data) (pp (prep to) (np (det a) (noun register)))). The rele-
vant canonical graphs are listed below.

write [write] —

(agnt) -> [action]

(obj) -> [value]

(src: {from}) -> [device]

(dest: {to | into}) -> [memory],. (29)
data [data]. (30)
to [action] -> (T: to) -> [object]. (31)
a [T:*]. (32)
register [register]. (33)

The problem here is that register is a subtype of both device
and memory, so joining the graph for “register” to the graph
for write is nondeterministic. To overcome this, a relational
join is performed. In processing the predicate, the semantic
rule first raises the graph for “write.” Next, the graph for data
is joined to the object concept predicated on its syntactic role
of being the direct object of the predicate, and under the con-
straint that data is a subtype of value. Since the next constitu-
ent is a nonterminal (prepositional phrase), it is processed to
produce Graph (34) from the graph for the preposition and
the graph for the noun phrase.

[action] -> (T: to) ->[register: *]. (34)

Notice that the preposition appears as an individual refer-
ent in its canonical graph and not as a concept. In order to
perform a relational join between Graphs (29) and (34), the
universal relation must be restricted to the dest relation,
and the individual referent “to” must be coerced into a sin-
gleton disjunctive set referent as in (35).

[action] -> (dest: {to}) -> [register : *]. (35)

Now, (29) and (35) can be joined to produce the final con-
ceptual graph (36) below.
[write] -
(agnt) ->[action]
(obj) ->[data]
(src: {from}) ->[device]

(dest : {to}) ->[register : *],. (36)

Even though only a sublanguage of English is processed by
the grammar and semantic analyzer, it is sufficiently com-
plex to preclude a detailed description here. Instead a few
examples of natural language statements and the concep-
tual graphs they generate are given here to support the dis-
cussion of integration of requirements which follows.

Block diagrams generally convey interconnection of de-
vices and hierarchical arrangements of devices. A natural
language expression for interconnection is, “Device X is
connected to device Y by carrier D.” Graph (37) below is
generated from this expression.

[connect] -
(inst) -> [carrier: D]
(obj) -> [device: X]
(dest: {to}) -> [device: Y],. (37)

Hierarchical structure may be expressed in English by ex-
pressions of the form, “Device X consists of device B, device
C and device D,” which generates Graph (38).

[contain: consists of] -
(agnt) ->[device : X]
(obj) ->[device : AND] -
(part) ->[device: B]
(part) ->[device: C]

(part) ->[device: D],. (38)

Expressions which convey relationships comparable to
those expressed in flowcharts include “If X is Y, then the
register is reset.” Conceptual graph (39) is generated from
this form of statement.

[reset] -
(obj) ->[register: #]
(if) ->[condition: [be: is] -
(agnt) ->[variable: X]
(obj) ->[value: Y],.].. (39)

Another representative expression is the statement of cau-
sality: “action causes action,” such as “Executing a CALL
instruction causes the address to be saved.”

[cause: causes] -
(agnt) -> [action: execution] -> (obj) ->
[instruction: *] - > (name) -> [CALL]
(obj) -> [action: to be saved] ->

(obj) ->[address: #].,. (40)

Quite often this type of relationship is expressed more suc-
cinctly by letting the causative action be the agent of the
consequent action as in, “Executing a CALL instruction
saves the address,” which has the graph below.

[action : saves] -
(agnt) ->[action : execution] ->(obj) ->[instruction :
*] -> (name) ->['CALL’]
(obj) ->[address : #],. (41)

Temporal relationships are expressed in natural language
through subordinating conjunctions (s_con) such as before,
after, while, during, until and concurrently with. These are
used in the form “action conj action,” as in “The processor
waits until a message is received,” and generates a con-
ceptual graph of the form
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[action] -> (t_rel: {s_con}) -> [action] (42)

where t_rel is a temporal relation and s_con is a subordi-
nating conjunction. Subordinating conjunctions are not ex-
act terms, but for this discussion, they will be interpreted as
tabulated in Table 7.

TABLE 7
TEMPORAL RELATIONS FOR SOME
SUBORDINATING CONJUNCTIONS

s_con t_rel Comments

after saf starts after finished
before fbs finishes before starts
concurrently with  fas, sbf two endpoint relations
during sas, fas, fbf, sbf ~ four endpoint relations
then sbs starts before starts
until fws finish when starts
when sas, sbf two endpoint relations
while sas, fas, fbf, sbf  same as during

These cases provide only a very small sample of the rich
variety of English expressions which may convey informa-
tion corresponding with the information expressed in more
formal notations. It will be noticed that the conceptual
graphs of the English expressions do not correspond di-
rectly with graphs derived from comparable expressions in
the more formal notations. To overcome this, methods for
joining appropriate conceptual graphs from different nota-
tions are given in the next section.

4 |INTEGRATION

As a requirements document is prepared, each component
of the document (a figure or sentence) will generate a sepa-
rate conceptual graph representing its meaning. To exploit
the benefits of the common notation of conceptual graphs,
it is necessary to integrate the requirements by joining these
separate conceptual graphs. As described earlier, two con-
ceptual graphs (derived from distinct requirements expres-
sions in a specification) may be joined on identical concepts
or identical subgraphs. Two concepts which are not identi-
cal can often be made identical by restriction operations.
Similarly, if a (small) conceptual graph can be projected
into two other conceptual graphs, then the two graphs may
possibly be joined on the projected images. Such joins may be
made maximal by extending the common subgraphs being
joined in both of the original graphs as far as possible. While
many subgraphs may be found in two conceptual graphs to
support joins, only a few of these may be desirable, since
joins should only be made on concepts (or subgraphs)
which have the same referent, or mean the same thing.
Detection of common references to a particular individ-
ual in informal notations is a major unsolved problem, par-
ticularly in natural language where it is referred to as
anaphora resolution. In formal systems, such as hardware
description languages, this problem is avoided by declara-
tions which force the designer to name every object and
value by a unique identifier. Restricting the informal nota-
tions and English sublanguage used here to this practice
would destroy the value of these notations in allowing the
user to focus on ideas and relationships rather than on de-
tails such as names and identifiers. Requiring an identifier

for every concept in the restricted sublanguage used for
requirements would also make it less readable, as in the
example “the remaining cpu (#45) registers (#589) are not
pushed (#2388) onto the stack (#8334).” This technique is
used to some extent in U.S. Patents, though not for auto-
matic processing.

In considering the integration of concepts referring to
common individuals, it is clearly appropriate to join two con-
cepts which have identical, individual markers (identifiers) in
their referent fields. Beyond such exact matches, however,
joining pairs of similar concepts is not always well advised.
For example, in the context of uniprocessors, joining the
counter concepts in [counter: #] -> (name) -> [‘program
counter’] and [counter; *] -> (name) -> [‘program counter’] is
reasonable since a uniprocessor has only one program
counter, whereas joining [register: *] with [register: #] is gen-
erally not advisable unless, perhaps, they occur in precisely
that order in the same or consecutive sentences of narrative
with no intervening references to registers. Several strategies
are available to deal with the common reference problem.
Where such joins are possible, they might be decided manu-
ally by a technical expert. This is the least desirable option.
Second, a query to the author of the requirements might be
generated for confirmation of a join hypothesis. Third, the
join might be decided on some measures of confidence such
as their being in consecutive sentences or the same para-
graph, or their being of a singular type, such as
“accumulator.” In practice, all of these mechanism may be
employed in the appropriate circumstances. Except when the
joins are directed by the requirements author or involve
unique identifiers, they will involve some uncertainty or ab-
ductive reasoning [14] in that the concepts joined are hy-
pothesized to have the same referent based on their type and
relations with other concepts. Therefore, it may be desirable
to retract them later if contradictions do occur. But once con-
cepts are joined, their individual forms are lost, so the simple
join only supports monotonic reasoning. To permit non-
monotonic reasoning where “joins” can be retracted later,
consider an approach using tentative or retractable joins. Let
a tentative join be denoted by a same relation between the
two concepts involved, so that the graph

[type_X] -> (same) -> [type_X]
indicates that both concepts are assumed refer to the same
individual. If a new concept is joined with one of two ten-
tatively joined concepts, then a same relation must be es-
tablished with the other concept as well. In general, a set of
concepts joined by the same relation must be a complete
subgraph, and the same relation is its own inverse. The ap-
proach of tentative joins can be extended for approximate
reasoning by defining an ordered set of relations having
different degrees of sameness, or by using the referent field
of the same relation to indicate the level of confidence of
the relation. Such quantified same relations are useful
where the position of the requirement in the document or
the distance between their sources in the document are con-
sidered in deciding on a join. Another major advantage of
using same relations rather than simply joining concepts is
that the individual graphs can be identified and traced back
to their source notational units to facilitate back annotation,
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a very attractive feature in supporting integrity between
requirements documents and products derived from them.
The disadvantage, of course, is that more computational
effort will be required in comparing and operating on com-
plete subgraphs of same related concepts rather than on
single concepts.

In a related project [26] to develop an automatic corefer-
ence detector for object (device and value) concept types,
good results have been achieved. The Coreference Detector
developed in that work is a rule-based system that main-
tains a table of references to objects encountered in a text.
These references are called definitions. When a subsequent
object reference is encountered, it is compared with entries
of comparable type in the table and classified as a corefer-
ence or definition based on the system of rules. In 80%-95%
of the cases, coreferences are properly classified. When er-
rors occur, the program conservatively misclassifies refer-
ences as definitions rather than as coreferences.

As an alternative to these tentative joins, the lines of
identity or coreference links defined by Sowa [28] can be
used to associate concepts. Coreference links are arcs be-
tween multiple appearances of a given concept, and are
necessary in nested conceptual graphs. These links are not
labeled and do not involve relations. In addition, corefer-
ence links denote equality of concept appearances and,
though they, like any conceptual graph structure, might be
retracted, there is no label that can be used to indicate the
degree or confidence level of sameness or equality.

Next, the effects of differing canonical bases on the inte-
gration of requirements must be considered. Even with
tentative joins, the desired integration of requirements from
different source notations (text and diagrams) is likely to
remain undesirably low because the various source nota-
tions employ different canonical bases. The cost of failing to
join two concepts that refer to the same individual is that
two distinct individuals of that concept are implied. Thus,
the apparent cost of the system will be higher (multiple
device concepts) or performance will be lower (multiple
action concepts). Concepts and relations are sites for inte-
gration of conceptual graphs. So, if concepts and relations
implied by subgraphs are added to a graph, then the po-
tential for integration with other graphs is increased (at the
cost of searching on the increased number of nodes). The
augmentation of graphs by implied concepts and relations
might be expressed as rewrite rules of a graph grammar [5],
but can be adequately implemented by expansions using
type and relation definitions.

As a first example, consider the canonical graph (37)
for the verb “connect.” This graph can join Graphs (10)
and (11) of the block diagram basis only on the device
concepts. But, there is little motivation to arbitrarily attach
a port or carrier concept to a device. The verb “connect,”
however, clearly implies the existence of a communicating
carrier between the two devices, and, furthermore, the
preposition “to” suggests at least partial specification of
directionality. In comparison, the phrase “with device”
suggests no directionality, so the (<>) relation is required.
Consider the schema for connect shown in Graph (42).
While this graph could be used as a canonical graph for
“connect,” it should not be the first choice, since an incor-

rect attachment during semantic analysis based on the
implied carrier might be made over a correct attachment
to the object device. For the connect concept to occur in a
conceptual graph, an instantiation of the canonical graph
for the word “connect” or a synonym will be a subgraph
of it. First, this schema can be joined with the canonical
graph for connect in the given sentence graph. Next, the
subgraph of this schema that identifies the ports and their
attachment relations is projected into the given block dia-
gram graph. The two graphs may then be joined on the
projection. (If multiple projections occur, the schema must
be retracted.)

schema for connect(x) is

[connect : *X] -
(inst) -> [carrier] -
(<>) -> [port: *1]
(<>) -> [port: *2],
(obj) -> [device] -> (->) -> [port: *1]
(dest : {to}) -> [device] -> (<-) -> [port: *2],. (42)

A more subtle implication to facilitate the joining of struc-
tural information from block diagrams with natural lan-
guage statements involves the send concept. Sending a sig-
nal or message from one device to another implies a par-
tially directed connection between the two, so the canonical
graph (43) below for “send” may be expanded by schema
(44). This concludes that a carrier exists, if one is not speci-
fied by a “using carrier” or a “on carrier” phrase, and that
the agent device (subject of an active sentence) is the source
and the device introduced by the preposition “to” is the
destination.

[send] -
(agnt) ->[device]
(obj) ->[value]
(dest: {to}) ->[device]

(inst: {using | on}) ->[carrier] (43)

schema for send(x) is

[send : *x] -
(agnt) ->[device] -> (->) ->[port: *1]
(obj) ->[value]
(dest: {to}) ->[device] ->(<-) ->[port: *2]
(inst: {using | on}) -> [carrier] -
(<>) ->[port: *1]
(<>) ->[port: *2] (44)

As a third example, consider that Graph (38) for “consist
of” does not integrate well with the structural basis Graph
(12). The problem is the separation of the containing device
and the contained devices by the “contain” node and its
attached relations. This can be improved by (45), where
part relations are added from the agent device of contain to
each component device of its object.

In addition to the structural implications of some cano-
nical graphs for natural language, causal and temporal rela-
tions may also be implied for integration with graphs pro-
duced from flowcharts and timing diagrams. For example,
graphs such as (39) containing conditional expressions (if
relations) need to be augmented by the starts_when_finished_if
(swfif) relation used in the flowchart canonical basis. This
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CYRE: CAPTURE, INTEGRATION, AND ANALYSIS OF DIGITAL SYSTEM REQUIREMENTS WITH CONCEPTUAL GRAPHS 13

can be done with a relation definition corresponding to the
if relation in English statements.

schema for contain(x) is

[contain : *x] -

(agnt) -> [device] -
(part) -> [device: *a]
(part) -> [device: *b]
(part) -> [device: *c],

(obj) -> [device : AND] -
(part) -> [device: *a]
(part) -> [device: *b]

(part) -> [device: *c],,. (45)

schema for if(x, y) is

[action: *x]
(if) -> [condition: *y]
(swsif) -
1 -> [action: *x]
2 -> [condition : *y],,. (46)

Similarly, an implied starts_when_finished relation can be
added to a cause concept.

schema for cause(x) is

[cause : *X] -
(agnt) -> [action: *x]

(obj) -> [action] -> (swf) -> [action: *x],. (47)

The causal relation implied by using one action as the agent
of another in an English expression can be expanded to in-
clude an swf relation with a relation definition (48) for the
agent relation.

schema for agnt(x,y) is

[action: *x] -
(agnt) -> [action: *y]
(swf) -> [action: *y] (48)

A very important aspect of the integrated conceptual graph
that is formed by these and other integration mechanisms is
that it be self-consistent. In the next section, analysis of con-
ceptual graphs is considered.

5 ANALYSIS

The conceptual graph formed by the integration of individ-
ual requirements graphs can be subjected to several kinds
of analysis. First, consistency can be checked by determin-
ing if any pair of concept nodes have inconsistent relations
between them. Second, translation and integration employ
canonical basis graphs and schemata which introduce new
generic concepts. Since a generic concept is a concept which
has no referent, generic concepts may be interpreted as
omissions, particularly generic concepts having few rela-
tions with other concepts of the integrated graph. Addi-
tional analyses of integrated graphs for measures such as
cost, performance, and reliability can be considered, but are
beyond the scope of this discussion.

5.1 Consistency

Assuming the conceptual bases used to form the concep-
tual graphs are self-consistent and their concepts (and

relations) have been restricted with consistent (conformal)
subtypes and individuals, the primary manifestation of
inconsistency will be through inconsistent conceptual re-
lations between a given set of concepts, or between sets of
concepts tentatively joined by the same relation. In exam-
ples studied thus far, conceptual graphs tend to be rela-
tively sparse, having few relations between pairs (or sets)
of concepts. This suggests the computational cost of con-
sistency checking will be small, particularly since con-
ceptual relations are typed, and many types of relations
are simply not comparable, such as obj with if. On the
other hand, a relation between two concepts may be in-
consistent with the transitive closure (composition) of re-
lations along some other path between those concept
nodes. Detecting this form of inconsistency globally re-
quires the additional computation of forming the transi-
tive closure and comparing the new relations generated.
Fortunately, many relations do not have transitive prop-
erties. For example, the composition of agnt with itself is
meaningless. Also, the composition of relations can be
computed as graphs are joined, distributing the computa-
tion over time. In the following, it will be assumed that
the transitive closure has been performed. Developing
consistency/reduction tables for all pairs of relations and
estimating the computational cost of consistency checking
are topics of current research.

The checking of pairs of relations between given con-
cepts is facilitated by consistency tables for appropriate
types (and subtypes) of relations. In some cases, a pair of
relations may not only be consistent, but may be replaced
by a single relation. Thus, consistency checking can provide
an added benefit of reducing the conceptual graph.

As a first example, a consistency/reduction table for in-
terconnection relations in block diagrams can be con-
structed as shown in Table 8 for block diagram attachment
relations. Two interconnection relations between a pair of
concepts either reduce or conflict as shown in the table.
Interconnection inconsistencies are denoted by an ‘X’ in the
table. For example, attachment between a pair on nodes
cannot be both input_only (<<) and output_only (>>), but
an input attachment (<-) and an output attachment (->)
between the same pair of nodes is simply a bidirectional
attachment (<>).

TABLE 8
CONSISTENCY/REDUCTION TABLE
FOR INTERCONNECTION RELATIONS

| e R

- | e ||
| | | X[
- (= = | X R <
b |0 o | N | o | X | X
e | X s | X (<2 | X
< [ ||| X | X |2

Two part relations between a pair of devices must either
simplify to one part relation or must conflict (if they are in
opposite directions). Since the part relations are composi-
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tional, the transitive closure of part relations should be
computed and checked.

Since the relations used in flowchart canonical graphs
are very like those used in for timing diagrams, they may
be considered together. For example, the swfif relation can
be considered to be a swf relation for consistency analysis,
but not for reduction. Since the composition of temporal
relations is possible, the transitive closure should be per-
formed before the consistency check is made. In comparing
temporal relations, the inverse relations must also be con-
sidered. The finishes_before_starts (fbs) and its inverse
must also be included in the analysis. This results in a 12 by
12 table, which may be found in Matuszek et al. [20].

In addition to the swf and swfif relations in flowcharts,
the unary entry and exit relations may also occur. Since
these are interruptions on flowlines, and flowlines are uni-
directional, a process may have multiple entry or multiple
exit relations, but each must have a distinct referent.

The relations used in the natural language canon may be
partitioned according to whether their initial concept nodes
may be actions and events, or devices and values. Rela-
tions from actions and events include the case frame rela-
tions: accompaniment, agent, destination, instrument,
manner, object, purpose, and source. Because of the wide
variety of constructs that may occur in English it is difficult
to determine which pairs of relations are universally incon-
sistent. But for the sublanguage considered in Table 9 is
useful. Incompatible pairs of relations are marked with an
“X.” Relation pairs marked by a question mark are gener-
ally not compatible, but may occur in rare cases with a re-
flexive pronoun as in “the processor (agnt) sent itself (dest)
a message,” “the device (agnt) started itself (obj),” “the de-
vice added the value (obj) with itself (acc).”

TABLE 9
CONSISTENCY FOR NATURAL LANGUAGE RELATIONS

acc | agnt | dest| inst | man | obj |PUrp| src
ace X X |X X |? X |X
agnt. X ?IX (X ?7|1X ?
dest X ? X | X |X |X ?
inst X | X | X X | X X | X
™Man X X X |X X | X | X
ohj 21 ? X |[X |X X|?
poap [ X | X | X [ X | X | X X

The relations ordinal, quantity, and attribute which at-
tach to device and value nodes are mutually inconsistent
since ordinals, quantities, and attributes point to different
concept types. Another type of inconsistency can be
checked for with the ordinal and quantity relaions. An ob-
ject cannot be related to two different ordinals (as the sec-
ond and the seventh register) and cannot be two different
quantities, but may have several different attributes.

Finally, the absurd relation and relations with absurd
and empty concepts need to be mentioned. Absurd rela-
tions and concepts and empty concepts can only arise
through canonical graphs and type definitions. The nega-
tive constraints they impose can also be represented
through inconsistency tables and “false” graphs, though

this may result in a higher computational cost. The absurd
relation is interpreted as a statement that no relation can
exist between the concepts in question, so any other relation
between the concepts resulting from a join must be incon-
sistent. (Similarly, the universal relation between two con-
cepts mean that they are identical and should be joined.) A
relation with the absurd concept means that that particular
relation cannot exist for any possible concept, and so that
particular relation from the same initial concept to any
other concept must be an error. A relation with an empty
concept of a particular type indicates that that relation can-
not exist with an individual of that type. Any join that con-
tradicts this must be an error.

As research continues, a more complete basis for consis-
tency checking will be developed. Next, the analysis of re-
guirements for omissions is considered briefly.

5.2 Completeness

Determining what is missing in a requirements document is
normally a difficult task, but is relatively simple using con-
ceptual graphs. The canonical graphs forming the canonical
bases for translating source notations are templates repre-
senting the expected context or environment of a concept.
Similarly, schemata are templates. A simple indication of
completeness in a template system is the presence of un-
filled template slots. In basis graphs and schemata, all
nodes are initially generic (unfilled). As a requirements
document is completed, many of the generic concepts
should become individualized or should become special-
ized by many relations including same relations becoming
attached to them. Concepts that are not specialized and
remain only loosely connected to the the integrated graph
may represent omissions in the requirements document.
(This is not to say that they must be specified in this docu-
ment, but that task may be delegated to designers.) The
value of this form of omission analysis is that the require-
ments authors can be made aware of the decisions that are
being passed on to the design engineers. Alternatively,
loosely coupled nodes may represent irrelevancies, and
should be deleted by the requirements author. For example,
the extent of specialization of a node is represented by the
degree of the node (especially the out-degree). Detecting
low-degree nodes with respect to a histogram of node de-
grees should quickly identify problems.

An integrated requirements graph should be roughly
centered about a concept node labeled by the system type. If
requirements are well balanced, new concepts introduced are
later specialized by further statements and expressions, and
the graph should grow relatively evenly from the initial sys-
tem concept node. A graph which has grown extensively
along only a few paths suggests that some aspects of the
system have been overspecified, while other aspects are in-
complete.

These are only a couple of example of how a require-
ments graph may be analyzed for completeness (and over-
specification). Further algorithms to determine the quality
of a specification based on analysis of the graph offer fertile
ground for research.
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6 FUTURE RESEARCH

This work will be extended in several ways in future re-
search. First, conceptual bases need to be developed for
additional source notations employed in requirements
documents. In particular, the flowchart notation does not
admit multiprocessing and parallel processing, so a nota-
tion such as Petri nets will be considered included. Another
notation that may be observed in product specifications is
the state diagram (often as an informal bubble diagram).
the hierarchical organization of states in statecharts will
also be accommodated Finally, tables are used quite exten-
sively in requirements documents to specify such diverse
requirements as the results of various signal values on ports
and ranges of values for delays and other parameters. Al-
though a table may be construed as a small relational data
base, generating conceptual graphs that integrate easily
with other requirements should be an interesting task.

The current canonical basis for English is quite limited,
and must be extended, especially in type definitions. Much
more experience with the analysis of requirements ex-
pressed in natural language is needed to provide a robust
and user friendly system.

An exciting direction for future research is automatic
synthesis of systems at the conceptual graph level, that is
requirements-level synthesis. To some degree this involves
developing algorithms to perform traditional synthesis
tasks (design style selection, partitioning, scheduling, allo-
cation) on conceptual graph representations. But, a set of
requirements is not a design, and therefore will provide an
incomplete model at best. To overcome this, a prototype
can be developed for each concept in order to provides a
typical or normal context or instance of that concept by in-
cluding default values of measurement concepts and other
reasonable assumptions. The result of joining such default
prototypes to a conceptual graph of requirements is a pre-
liminary design. This design may then be analyzed for cost
and performance, and may even be complete enough to
support some form of simulation. Initial progress in auto-
matically generating graphical feedback models and in
synthesizing VHDL descriptions from conceptual graphs
are encouraging [15], [30].
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