Top-down Parsing

— I'm looking for an S.

— To get an S, I need an NP and a VP.
— To get an NP, I need a D and an N.
— To get a D, I can use the ... Got it.

— To get an N, I can use dog ... Got it.
— That completes the NP.

— To get a VP, I need a V.

— To get a V, I can use barked ... Got it.
— That completes the VP.

— That completes the S.

NP/ |
N [

VP

Figure 6.2 Top-down parsing. The parser
discovers the nodes of the tree in the order
The dog chased the cat shown by the arrows.

N

VP
D N Vv NP
c cat
Figure 6.3 Bottom-up parsing. The parser discovers the nodes of the tree in the order
shown by the arrows.

START \

The dog chased th

Because its actions are triggered only by words actually found, this parser does not
loop on left-recursive rules. But it has a different limitation: it cannot handle rules like

D— @

because it has no way of responding to a null (empty, missing) constituent. It can only
respond to what’s actually there.

Step Action Stack Input string
(Start) the dog barked

| Shift the dog barked
2 Reduce D dog barked
3 Shift D dog barked

4 Reduce DN barked

5 Reduce NP barked

6 Shift NP barked

7 Reduce NPV

8 Reduce NP VP

9 Reduce S

START \

S
NP ve
D N Vv
(Figure 6.5 Left-corner parsing. Note that
some nodes are visited twice, once working
The dog chased cat top-down and once working bottom-up.

1. Accept a word from the input string and determine its category. Call its category
W.

2. Complete C. If W = C, you’re done. Otherwise,

e Look at the rules and find a constituent whose expansion begins with W. Call
that constituent P (for “phrase”). For example, if W is Determiner, use the rule
NP — D N and let P be Noun Phrase.

e Recursively left-corner-parse all the remaining elements of the expansion of P.
(This is the top-down part of the strategy.)

e Last, put P in place of W, and go back to the beginning of step 2 (i.e., start
over trying to complete C).

Earley’s Algorithm

Start with: chart(start, [the,dog,chases,the,cat], [s], [the,dog,chases,the,cat]).

Predict: Use § — NP VP and NP — D N.
chart(s, [the,dog,chases,the,cat], [np,vpl, [the,dog,chases,the,cat]).
chart(np, [the,dog,chases,the,cat], [d,n], [the,dog,chases,the,cat]).

Scan: Accept the.]
chart (np, [the,dog,chases,the,cat], [n], [dog,chases,the,cat]).

Complete: Nothing to do; no phrase has been completed.
Predict: Nothing to do; there are no rules expanding N.

Scan: Accept dog.
chart(np, [the,dog,chases,the,cat], [], [chases,the,cat]).

Complete: An NP has now been parsed.
chart(s, [the,dog,chases,the,cat], [vp], [chases,the,cat]).

Predict: Use VP — Vand VP — V NP.
chart (vp, [chases,the,cat], [v], [chases,the,cat]).
chart(vp, [chases,the,cat], [v,npl, [chases,the,cat]).

Scan: Accepl chases.
chart(vp, [chases,the,cat], [], [the,cat]).
chart(vp, [chases,the,cat], [np]l, [the,cat]).

Complete: According to VP — V, a VP and hence the S have now been parsed.
chart (s, [the,dog,chases,the,cat], [], [the,cat]).
chart(start, [the,dog,chases,the,cat], [], [the,cat]).

Predict: The other VP rule is still looking for an NP. Expand it...
chart(np, [the,cat], [d,n], [the,cat]).

Scan: Accept the.
chart (np, [the,cat], [n], [cat]).

Complete: Nothing to do—no phrase has been completed.
Predict: Nothing to do—there are no rules expanding N.

Scan: Accept cat.
chart (np, [the,cat], [],[1).

Complete: Now the NP, and hence the VP and S, have been parsed.
chart (vp, [chases,the,cat], [1,[1).
chart(s, [the,dog,chases,the,cat], [],[]).
chart(start, [the,dog,chases,the,cat], [],[]).
All done.

