Chomsky Hierarchy

Type	Grammar	Language	Automata
3	Finite State	Regular	Finite
2	Context-Free	C-F	Pushdown
1	Context-Sensitive	C-S	Linear-Bounded
0	General Rewrite	Unrestricted	Turing Machines

- occasionally referred to as Chomsky—Schützenberger hierarchy
- described by Noam Chomsky in 1956
- hierarchy of grammars
 - Type $3 \subset \text{Type } 2 \subset \text{Type } 1 \subset \text{Type } 0$

Alphabets and Languages

An alphabet is a finite non-empty set.

Let S and T be alphabets.

$$S \cdot T = \{ s t | s \epsilon S, t \epsilon T \}$$
(We'll often write ST for S•T.)

 λ = empty string, string of length one

$$S^0 = \{\lambda \}$$

$$S^1 = S$$

$$S^n = S^{(n-1)} \cdot S, n > 1$$

$$S^+ = S^1 U S^2 U S^3 U \dots$$

$$S^* = S^0 U S^+$$

A <u>language</u> L over an alphabet S is a subset of S*.

Definition of a Grammar

A grammar G is a 4 tuple $G = (N, \Sigma, P, S)$, where

N is an alphabet of nonterminal symbols

 Σ is an alphabet of <u>terminal symbols</u>

N and Σ are disjoint

S is an element of N; S is the <u>start symbol</u> or <u>initial</u> <u>symbol</u> of the grammar

P is a set of <u>productions</u> of the form $\alpha \rightarrow \beta$ where α is in (N U Σ)* N (N U Σ)*

 β is in (N U Σ)*

Classes of Grammars (The Chomsky Hierarchy)

Type 0, Phrase Structure (same as basic grammar definition)

Type 1, Context Sensitive

- (1) $\alpha \rightarrow \beta$ where α is in $(N \cup \Sigma)^* N (N \cup \Sigma)^*$, β is in $(N \cup \Sigma)^+$, and length(α) \leq length(β)
- (2) γ A δ -> γ β δ where A is in N, β is in (N U Σ)+, and γ and δ are in (N U Σ)*

Type 2, Context Free

A -> β where A is in N, β is in (N U Σ)*

Linear

- A-> x or A -> x B y, where A and B are in N and x and y are in Σ^*
- Type 3, Regular Expressions
 - (1) left linear A -> B a or A -> a, where A and B are in N and a is in Σ
 - (2) right linear A -> a B or A -> a, where A and B are in N and a is in Σ

Comments on the Chomsky Hierarchy (1)

- Definitions (1) and (2) for context sensitive are equivalent.
- Definitions (1) and (2) for regular expressions are equivalent.
- If a grammar has productions of all three of the forms described in definitions (1) and (2) for regular expressions, then it is a linear grammar.
- Each definition of context sensitive is a restriction on the definition of phrase structure.
- Every context free grammar can be converted to a context sensitive grammar with satisfies definition (2) which generates the same language except the language generated by the context sensitive grammar cannot contain the empty string λ .
- The definition of linear grammar is a restriction on the definition of context free.
- The definitions of left linear and right linear are restrictions on the definition of linear.

Comments on the Chomsky Hierarchy (2)

- Every language generated by a left linear grammar can be generated by a right linear grammar, and every language generated by a right linear grammar can be generated by a left linear grammar.
- Every language generated by a left linear or right linear grammar can be generated by a linear grammar.
- Every language generated by a linear grammar can be generated by a context free grammar.
- Let L be a language generated by a context free grammar. If L does
 not contain λ, then L can be generated by a context sensitive grammar.
 If L contains λ, then L-{λ} can be generated by a context sensitive
 grammar.
- Every language generated by a context sensitive grammar can be generated by a phrase structure grammar.

The Chomsky Hierarchy and the Block Diagram of a Compiler

