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Abstract

A model of simple agents capable of sending and receiving se-
quences of characters and associating them with elements of a
set of structured meanings is used to explore the emergence of
systematic communication. In computational simulations, each
member of a population alternates between learning to interpret
the sequences sent by other members, and sending sequences that
others learn to interpret. Eventually the agents develop highly
coordinated communication systems that incorporate structural
regularities reminiscent of those in human languages.

1 Introduction

Human language makes it possible to express a vast number of different and
complex meanings with sequences composed of a relatively small number of
relatively simple elements — and to interpret such sequences as the meanings
they express. A traditional sense of the word “grammar,” and the one I
adopt here, refers to the systematic regularities between meanings and their
expression as sequences of sounds or gestures in a language.
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In particular, the grammars of human languages incorporate systematic
regularities involving the structures of the meanings and the sequences that
express them. For example the morphological structure of an inflected verb
conveys information about the person, number, and gender of one or more
of the participants in the event or situation the verb describes.

The structural regularities of a language constitute a resource that a
speaker can use to express novel meaning combinations, provided that the el-
ements out of which the new meaning is constructed and the relations consti-
tuting that structure are consonant with the language’s grammar. The hearer
can accurately interpret the utterance as involving those familiar structural
constituents and relations, even though that specific combination may have
never been used before. Thus the system can be used to express meanings
tailored to the specific occasion of their use, and can be extended as the
need to express new meanings arises. Learning is relatively easy because the
novice has to master only the structural regularities and basic elements of a
language, instead of memorizing all of its meaning/expression pairs.

The ability to communicate by exploiting a system of structural regular-
ities therefore represents an invaluable achievement of a species for which
coordinated social activity is vital to survival, and for which the accurate
exchange of information often provides adaptive benefit. Given this benefit,
it is tempting to explain the achievement as the result of natural selection.

However it is important to distinguish between the evolution of language
itself — in particular the emergence, modification, and enrichment of the
grammatical resources in human languages — and the biological evolution of
articulate hominids. Clearly they are related: Lacking appropriate anatom-
ical and neurological endowment, an animal will be unable to produce or
perceive complex signals, and without sufficiently powerful cognitive abili-
ties, it cannot entertain meanings worth communicating in the first place.
But the adaptive benefits of such traits are not specific to communication,
and it is not clear how communication alone could provide sufficient selection
pressure for their development.

In this paper I explore the idea that some of the grammatical regularities
manifest in human language could emerge as a result of non-genetic cul-
tural processes among a population of animals with the cognitive capacities
required for communication, but who do not initially share a coordinated
communication system. Whether or not this is what really happened in our
species is unknown, but the possibility seems worth investigating, to better
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understand both its plausibility and its limitations.

Speculation about the origins and early development of human language
must perforce originate in intuitions based on experience with its modern
versions. Though these intuitions can be tested methodologically, with the
resources of linguistics, psychology, anthropology, neuroscience, literary stud-
ies, and other disciplines, we are for the most part limited to the one class
of exemplars. There is obviously no way to go back and observe what hap-
pened since the Pliocene epoch, and the differences between the regularities
exhibited by the grammars of human languages and those of other animal
communication systems seem profound.

Mathematical and computational models provide a way to explore al-
ternative accounts of the emergence of systems of communication. If the
consequences of a model are consistent with expectations based on intuitions
or speculation, they might obtain some small measure of support. But more
interestingly (and, as it happens, more often), the consequences of a model
may deviate from expectations. In working out the reasons for the differ-
ences, one can potentially develop a richer set of intuitions. Models are thus
valuable to the degree that they explicitly illustrate the consequences of the
set of assumptions they embody. This may be even more important than
whether those assumptions are correct.

The computational simulations described in this paper involve popula-
tions of simple agents that can produce sequences of tokens to encode struc-
tured meanings, and can assign interpretations to sequences of tokens. Ini-
tially the agents’ communication systems are almost totally uncoordinated:
Few, if any, agents send the same sequence for the same meaning, and none
of the agents is able to correctly interpret sequences sent by others. Dur-
ing the simulation runs, each agent alternates between learning to interpret
sequences sent by the other members of the population, and sending se-
quences that other agents learn to interpret. Such populations eventually
develop systems that support highly accurate communication, even of novel
meaning combinations. As the cognitive skills of the simulated agents are
possessed by some primate species, and no language-specific innate capaci-
ties are required, the simulations might model the emergence of some of the
grammatical regularities in human languages.
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Figure 1: Communicative agents. The values in the speaker’s meaning vec-
tor are used by the speaker’s recurrent network to determine a sequence of
characters to send. The hearer’s recurrent network processes that sequence
to determine the values stored in the hearer’s meaning vector.

2 Communicative Agents

The simple model of communication explored in the computational simu-
lations is illustrated in Figure 1. Each agent contains a “meaning vector”
that stores ten real numbers between 0.0 and 1.0, and a simple recurrent
network that is used to send and receive sequences of characters from the set
{a,b,c,d}.

In an episode of communication between a pair of agents, each value in
the speaker’s meaning vector is first set to either 0.0 or 1.0, depending on
which of the set of meanings described in Section 3 is to be conveyed. The
values in the speaker’s meaning vector are used by the speaker’s recurrent
network to determine the sequence of characters it sends. This sequence is
processed by the hearer’s network to determine the hearer’s meaning vector.

The accuracy of a communicative episode is assessed by comparing the
values on the speaker’s meaning vector with those in the hearer’s after the
sequence sent by the speaker for a given meaning has been processed by the
hearer. A value in the hearer’s vector will be called “correct” if it is within
0.5 of the value in the corresponding position of the speaker’s vector. A more
sensitive measure of the accuracy of the hearer’s interpretation is obtained
by computing the root mean square of the difference between the values in
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Figure 2: Recurrent neural networks used in the communicative agents. Each
layer contains a set of units whose activation values are determined by units
in the previous layer and the values of connection weights between the units.
Activation values of the character input units in the input layer are set ex-
ternally. Activation values of the context input units are copied from from
the activation values of the units in the hidden layer after each character is
processed.

meaning vectors of the speaker and the hearer, after processing the sequence.
This value will be referred to as the hearer’s “error” for the sequence.

Treating meaning as a pattern of binary values is wildly simplistic of
course, but is at least straightforward and explicit, and is consistent with the
approach of information theory. A more subtle assumption underlying this
model is that the agents are capable of producing and recognizing tokens
from some finite set, and of mapping sequences of such tokens to and from
meanings. While there is evidence that humans perceive and produce speech
sounds as tokens of discrete categorical types, and that this ability is partly
innate, it is also at least partly learned (Eimas et al., 1971). Even if innate,
the ability to perceive such categories must have developed along with other
linguistic abilities, as opposed to being present in fully developed form before
the emergence of grammar, as this model assumes.

The architecture of the recurrent network in each agent is is illustrated
in Figure 2. The networks have three layers of units, with feed-forward con-
nections between the units of the input layer and those of the hidden layer,
and between the hidden layer and the output layer. The logistic activation
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h.1 Set all network inputs to zero.
h.2 Process each character:

h.2.a Set the input corresponding to the character to 1.0;
set the rest of the inputs to 0.0.
h.2.b Feed activation values forward through the network.

h.2.c Copy the values of the hidden units to the context input
units.

h.3 When the sequence is complete, copy the values of the output
layer of the network to the agent’s meaning vector.

Figure 3: Operation of the recurrent networks shown in Figure 2, when
receiving a sequence of characters.

function used for all of the units in the network. (See Haykin, 1994, Chap-
ter 6.) Each network has one input unit for each of the characters, thirty
context input units, thirty units in its hidden layer, and ten output units
(corresponding to the number of values in the agents’ meaning vectors).

When receiving a sequence of characters (i.e., when used inside the “hearer”
of Figure 1), the networks are operated as described in Figure 3. After initial-
izing the network, each character in the sequence is processed by activating
the input unit corresponding to that character, feeding activation values for-
ward through the network, and then copying the activation values of the
hidden layer to the network’s context input units. These values can thus
encode temporal properties of the sequence that has been processed so far.
After the last character of the sequence has been processed, the output of
the hearer’s network represents the hearer’s interpretation of the sequence.

Recurrent neural networks can be trained to associate specific output
vectors with specific sequences, or with sequences that satisfy various formal
constraints. (Jordan, 1986; Cleeremans et al., 1989 Elman, 1990; Siegelmann,
1993; Batali, 1994.)

To train a network to interpret a sequence as a given meaning vector,
the network is operated as shown in Figure 3, except that after step h.2.b,
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the backpropagation algorithm (Rumelhart, et al., 1986) is used to modify
the weights of the network. The error of each output unit is determined
by the difference between the value of the meaning vector at the position
corresponding to the unit, and the unit’s actual value. A backpropagation
learning rate of 0.01 is used.

The network is trained after each character in the sequence is processed,
even the first character. Though, in general, it won’t be able to correctly
interpret sequences so early, this method of training forces the networks
to develop representations of temporal properties of the sequences in their
hidden layers that will enable the networks to produce the correct output
after more characters are processed.

The agents’ networks are used to receive sequences according to the algorithm
described in Figure 4. As the speaker generates a sequence of characters, its
network processes those characters as if it were receiving them. To choose
which character to send at each point in the sequence, the speaker determines
which of the four characters would bring its own output closest to the meaning
being conveyed. That character is then sent, and processed, by the speaker.
If, after doing so, all the speaker’s output units are correct for the meaning
being conveyed (or if the sequence has reached a cutoff length of twenty
characters), the speaker stops sending. Otherwise the process is repeated.

Networks are not trained to send sequences for meanings. However being
trained to interpret sequences will also modify a network’s sending behavior
by changing the network’s connection weight values.

The mechanism for sending characters was designed with the results of
Hurford (1989) in mind. His simulations involve a simpler model of com-
munication, in which unitary signals are used to convey meanings. Hurford
investigates a learning procedure he calls “Saussurean,” where an agent uses
its own learned responses to signals to determine what to send, and shows
that Saussurean learners often develop highly coordinated signaling systems.

While the complexity of the current model precluded using Hurford’s
learning procedure directly, the sending mechanism was designed to enforce
a relation between an agent’s transmission and reception behavior. Since
the agent’s network processes each character in a sequence as it is sent, the
network’s units will have identical activation values after processing each
character when sending a sequence and when receiving that same sequence.
Therefore if it stopped sending according to step s.5.a, when each of its
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s.1 Set all network inputs to zero.
s.2 Choose a character to send:
s.2.a For each character, determine how many output values
would be correct, were that character processed.
s.2.b Choose the character for which this value is highest.

s.2.c If more than one character would give the same number of
correct outputs, choose from them the one whose error is
lowest.

s.3 That character is sent to the hearer.

s.4 That character is processed by the network, as described in
step h.2 in Figure 3.

s.5 After the character is processed:
s.5.a If each value in the network’s output layer is correct, stop
sending characters.

s.5.b Otherwise if the total length of the sequence sent exceeds
a maximum value, stop sending characters.

s.5.c Otherwise continue at step s.2.

Figure 4: Operation of the recurrent networks shown in Figure 2, when used
to send a sequence of characters.
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output activation values was correct, the network will, after hearing the se-
quence, also have the correct meaning. Thus the agent will correctly interpret
sequences that it sends. (This will not be true, on the other hand, for se-
quences terminated because the cutoff length is reached.)

The assumption that agents can use their own responses to characters as
a means to predict the responses of others is crucial to the present model,
and must be satisfied in any animals to which it could be applied. The ability
to use one’s own cognitive and emotional responses to potential situations to
predict or understand those of others is of great value for animals with rich
social interactions. It appears to be present to some degree in the primates,
and is relatively developed in apes, though not nearly to the degree it is in
humans. (See the papers in Whiten, 1991).

3 An Interpretation of the Meaning Vectors

The meanings transfered between the agents are just vectors of numerical
values. The mnemonic interpretation of the meaning vectors described in
this section will be used in the analysis of the sequences used to convey them.
Although the interpretation is motivated by speculation about the emergence
of grammar in humans, and involves a model of properties of natural language
pronouns, [ am not claiming that results of the computational simulations
constitute any sort of justification for either. The simulations are intended
to explore whether agents can develop coordinated systems for conveying
structured meanings. The following interpretation of the meaning vectors is
intended only to facilitate the analysis of whether and how they do.

A crucial event in the emergence of grammar occurred when discrete
signals, perhaps like those used as alarm calls by vervet monkeys (Cheney
and Seyfarth, 1990), began to be treated as being composed of relatively
independent meaningful segments that could be systematically combined to
produce new signals. For this to happen, their users must have been capable
of comprehending meanings whose content could be analyzed into more or less
independently meaningful components, perhaps as involving a group of one or
more individuals that manifest some property or relation, or are participating
in some type of process or event. Given the capacity to comprehend such
meanings, it might then have been useful to express them.

In human languages such meanings are expressed with a clause, headed
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Predicates Referents Example Meanings
values sp| hr| ot | pl values
011001 || happy 11000 me 0010101001 || (one angry)
011100 || sad 17010 | 1] we 1101010101 || (yumi silly)
101001 || angry 110|111} mip 1111100101 || (all sick)
100011 || tired 0| 1010/ you 0111100110 || (yup hungry)
110001 || excited 0| 110 |1 | yal 1011010101 || (mip silly)
100101 || sick 0| 1|1 |11 yup 0111100101 || (yup sick)
100110 || hungry 11110 |1 | yumi 0100100011 || (you tired)
000111 || thirsty 010|110/ one 0011000111 || (they thirsty)
010101 || silly 0|0 | 1|1/ they 1001011100 || (we sad)
010011 || scared 17111} al 1000110001 || (me excited)

Figure 5: Meaning vectors for the predicates (left), referents (center), and
ten example meanings (right).

by a verb whose inflectional form often conveys information about one or
more of its thematic arguments, as well as about the process or situation
involving the individuals those arguments refer to. In some languages, the
information conveyed by its inflection enables a single verb form to function
as a complete utterance.

The interpretation of the meaning vectors is therefore motivated by the
possibility that the grammar of an early communication system might have
resembled the inflectional morphology of verbs in modern languages. The
values in the meaning vectors are partitioned into two groups: Six of the
values are taken as encoding a predicate, and the remaining four are taken as
encoding a referent that the predicate applies to. There are ten patterns each
for the predicates and referents, and therefore 100 different meanings that
can be represented. The meaning vectors corresponding to the predicates
and referents are shown in Figure 5, in addition to ten example meanings.

The meaning vectors for the predicates are randomly chosen, such that
each has three positions whose value is 1 and three whose value is 0. The
word assigned to each of them is entirely arbitrary. (For example, there is
no intended relationship between the pattern representing happy and that
representing sad.)

As with the set of predicates, the names used for the referent have no
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significance other than the vector of values they stand for. However the
names are related to the values in the meaning vectors according to a simple
model of natural language pronouns. FEach position in the referent vector
indicates whether a certain property is true of the set of one or more referents.
The first position represents whether the set includes the speaker (sp) or
not. The second position indicates whether the hearer (hr) is included. The
third position indicates whether any other (ot) individuals are included. The
fourth position indicates whether the set of referents is plural (pl) or not.
Given this set of properties, there are ten combinations that are logically
consistent. The names assigned to them are based on words of English and
the English-based Creole language Tok Pisin, spoken in Papua New Guinea.
The features of the referents me, you, and they correspond to those of the
English pronouns. The referent one is third-person singular. Mip and yup
(based on Tok Pisin ‘mipela’ and ‘yupela’) refer to groups containing either
the speaker or the hearer, respectively, but not both, in addition to at least
one other individual. The referent yumi (also from Tok Pisin) designates a
group containing only the speaker and hearer. The referents we and yall
designate the speakers, or hearers, respectively, when construed as a group.
The referent of all is a group including the speaker, the hearer, and others.

4 Negotiation of Coordinated Communica-
tion

To communicate successfully, the members of a population of agents must all
send more or less the same sequence of characters for each of the meanings,
and must be able to correctly interpret most of the sequences sent by the
other members. Coordinated communication is achieved in the simulation
runs as each agent in the population alternates between learning to interpret
the sequences sent by others, and sending sequences for others to emulate.
I characterize this process as “negotiation” because all of the agents both
contribute to, and conform to, the population’s communication system as it
develops.

A simulation run is begun by creating a population of agents and ini-
tializing the connection weights of their networks to random values chosen
from a uniform distribution between —0.5 and +0.5. The simulation run
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n.1 Choose an agent at random from the population to act as the

“learner.”
n.2 Repeat 10 times:
n.2.1 Choose an agent other than the learner at random from
the population to act as the “teacher.”

n.2.2 Train the learner’s network to correctly interpret the
sequences sent by the teacher, each presented once, in

random order.
n.2.3 Return the teacher to the population.

n.3 Return the learner to the population.

Figure 6: A negotiation round.

correctness The fraction of communicative episodes observed in which
each value in the hearer’s meaning vector is correct.

error The average root mean square error between the hearer’s meaning
vector and that of the speaker after a communication episode.

distinctness The average fraction of sequences an agent sends for exactly
one meaning.

length The average total length of the set of sequences sent by each agent
for the set of meanings. A value 1.0 indicates that the length of each
sequence equals the cutoff value of 20.

Figure 7: Quantitative measures for assessing the degree of coordination of
communication in a population. Each value is based on a sample of commu-
nicative episodes observed after a round of a simulation run.
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Figure 8: Record of a simulation run of a population of 30 agents. Plotted
each round are the population’s correctness (co), error (er), distinctness (di),

and length (le) values. (See Figure 7.)

then proceeds as a sequence of “rounds” of negotiation, performed as de-
scribed in Figure 6. Quantitative measures of the degree of coordination of
the population’s communication, described Figure 7, are recorded after each
round of the simulation. Figure 8 presents the record of a simulation run of
a population of 30 agents.

In the first round of the simulation illustrated, the randomly initialized agents
have a correctness value near 0.0', their error is approximately 0.5, their
distinctness is low and the average length of their languages is high. All
of these values indicate that the members of the initial population do not
succeed very well in their communicative attempts; indeed the fact that the
average length of the languages is near the maximum indicates that the
agents are unable to interpret their own sequences accurately.

Tts expected value is 27", where n is the number of values in the meaning vectors.
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In the early rounds of the negotiation, the distinctness value rises sharply,
from near 0.20 at round 1 to above 0.90 by round 300. This happens because
each learner observes the sequences sent by ten other agents for each meaning.
Its training input is therefore almost certainly different for each meaning,
even though no individual agent sends a different sequence for each meaning.

By round 300 each agent sends more than 90 different sequences for the
100 meanings, but the agents are still not very accurately interpreting them.
Each learner will see, in general, ten different sequences for each meaning as
it is trained. This contradictory input makes it unlikely that after training
it will correctly interpret any of them very well. Still, slight statistical fluc-
tuations do occur, and increase the likelihood that certain sequences will be
sent for a given meaning. Such fluctuations are amplified as each agent is
trained, and the population starts to converge towards agreement about the
sequence to be sent for each meaning.

As this agreement develops, the agents are exposed to increasingly less
contradictory training input. They are therefore able to learn the developing
system with greater accuracy, as shown by the increase in correctness and the
decrease in error. The average length of the sequences sent steadily decreases,
as an agent need only send enough characters to differentiate one meaning
from the others.

By round 15000, the population has achieved a very high level of commu-
nicative accuracy. Over 92% of the meanings are being interpreted accurately.
The error has dropped to below 0.1, and the agents send different, and short,
sequences for each meaning. This run was continued for a total of 35670
rounds, at the end of which 97.6% of the meanings were being interpreted
correctly, with an average error of 0.044.

Figure 9 presents the sequences that an agent sends for some of the meanings
before, and after, a simulation run. The initialized agent’s sequences are all
the maximum length, and the agent sends only 34 different sequences for the
set of 100 meanings. After the simulation run the network’s sequences are
significantly shorter, and it sends a different one for each meaning.

Figure 10 illustrates that the agents in a population after a simulation run
can interpret each other’s sequences accurately. For several of the meanings,
the sequence sent by one agent is shown, as well as the meaning vector of
another agent after processing the characters in the sequence. Note that
almost all of the values are “correct” in the sense of being within 0.5 of the
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meaning sequence meaning sequence
(yumi scared) ccccceccecccecceeceece (yumi scared) cacd
(mip hungry) dbddddbdddbbdbddddbd (mip hungry) dbd
(yall sad) ccbaccccacaadbcabeac (yall sad) acb
(they scared)  dbddccdcccceccccececce (they scared) caad
(mip silly) aaaaaaaaaaaaaaaaaaaa (mip silly) ada
(yall angry) CCCCCCCCCCCCCCCCCCee (yall angry)  bcdbbbbbb
(yup sad) dddddddddddddddddddd (yup sad) abac
(me angry) aaaaaaaaaaaaaaaaaaaa (me angry) bdd
(yup silly) addddddcddddddddadcd (yup silly) adba
(we hungry)  ccddccccccdddeccedec (we hungry)  ddc
(they sad) CCCCCCCCCCCCCeeeeeee (they sad) abab

Figure 9: Sequences sent by an agent for some of the meanings when its
connection weight values are initialized to random values (left), and after it
has participated in a simulation run (right).

value in the speaker’s meaning vector, but, for the most part, they are much
closer than that, consistent with the low error value the population archived.

5 Analyzing the Systems

While the agents can evidently interpret each other’s sequences correctly,
this ability does not necessarily require that any systematic regularities exist
between the meaning patterns and the sequences that convey them. The
agents might have just settled on a set of short and distinct, but unrelated,
sequences to convey the meanings. In this section I describe some of the
languages that emerged in simulation runs and seek to elucidate whatever
systematicity they possess.

At the end of the simulation that involved the agents whose performance
is illustrated in Figures 9 and 10, the languages produced by each agent in
the population were compared. For 65 of the meanings, each agent in the
population produced exactly the same sequence. For 14 of the meanings,
all of the agents but one produced the same sequence, and for 17 of the
meanings, all of the agents but two produced the same sequence. For the
remaining meanings, most of the population produced the same sequence,
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(me happy) ba
1 0 0 0 0 1 1 0 0 1

0.97 0.02 0.05 0.19 0.00 1.00 0.99 0.00 0.00 0.98

(yumi scared) cacd
1 1 0 1 0 1 0 0 1 1
0.98 0.97 0.00 098 0.00 0.99 0.00 0.01 0.99 1.00

(you scared) caca
0 1 0 0 0 1 0 0 1 1
0.00 0.97 0.00 0.01 0.02 0.99 0.00 0.00 0.99 1.00

(mip hungry) dbd
1 0 1 1 1 0 0 1 1 0
0.97 0.00 099 092 0.98 0.00 0.00 0.99 0.99 0.02

(yall sad) acb
0 1 0 1 0 1 1 1 0 0
0.05 1.00 0.00 0.95 0.00 0.99 0.96 0.99 0.00 0.02

(they scared) caad
0 0 1 1 0 1 0 0 1 1
0.10 0.00 0.99 0.83 0.00 097 0.00 0.00 1.00 1.00

(mip silly) ada
1 0 1 1 0 1 0 1 0 1
0.49 0.07 099 092 0.00 0.99 0.00 0.99 0.00 0.99

(yall angry) bcdbbbbbb
0 1 0 1 1 0 1 0 0 1
0.26 1.00 0.03 1.00 0.99 0.00 0.99 0.00 0.00 1.00

Figure 10: One agent interprets sequences sent by another. Two agents
that participated in a simulation run were chosen, one to act as the speaker,
the other as the hearer. Each box above shows, for one of the meanings,
the sequence sent by the speaker. Below that is that is shown the correct
pattern of 1’s and 0’s corresponding to that meaning. The last line in each
box shows the hearer’s meaning vector after processing the sequence.



5 ANALYZING THE SYSTEMS 17

though there were more alternatives produced, usually by one or two agents
each.

5.1 A Paradigmatic Analysis

The sequences sent by a majority of the population for each of the meanings
are arranged as a paradigm, in accord with the motivation behind the inter-
pretation of the meaning vectors, at the top of Figure 11. The agent whose
sequences are shown in Figure 9 and 10, as it happens, doesn’t follow the
majority exactly, most strikingly in the sequence it sends for (yall angry).

While not completely regular, the sequences do exhibit some systematic-
ity. A quasi-linguistic analysis of the system is shown at the bottom of
Figure 11. Each sequence is analyzed as a root that expresses the predicate,
plus some modification to the root that expresses the referent. The analy-
sis is illustrated by replacing the characters of the supposed root with the
symbol ‘-7, followed by, or interspersed with, the modifier characters. The
predicates are ordered so that the most regular part of the paradigm is at
the top.

For the predicates tired, scared and sick, all of the sequences can be
analyzed as a root plus a suffix that determines the referent. For the referent
me the suffix is empty.

Sequences expressing the predicate happy do not completely conform to
this pattern. Instead of adding the character c to the end of the root form
to express the referent you, the character c is inserted between the two char-
acters of the root. A similar internal change, also with ¢, occurs when the
referent is yall. Instead of ending with ba for the pronoun yup, the suffix ac
appears. For we and all, sequences whose predicate is happy add an extra
c, compared with the first three predicates; and for mip and yumi, the suffix
does not include the final d that sequences for the first three predicates use.

The sequences for sad and ezxcited also deviate from the regularities ex-
hibited by the first three predicates, but at least some of the differences might
be due to the fact that the root forms for these two referents consists of a
single character, as opposed to two for the predicates above them. The root
is followed by b for the pronouns one, and they, but otherwise the sequences
for those referents are consistent with the predicates above them. For you
and yall the suffixes are the same as the first three predicates, except that
sequences whose predicate is excited have an a following the initial c in the
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one they  you yall yup me we mip yumi  all
tired cda cdab cdc cdcb cdba cd cdd cddb cdcd cdb
scared | caa caab cac cacb caba ca cad cadb cacd «cab
sick daa daab dac dacb daba da dad dadb dacd dab
happy | baa baab bca bcab baac Dba badc bab bac babc
sad aba abab ac acb abac a abdc abb abc abbc
excited | cba cbab cca ccab cbca c ccdc c¢b ccb cbc
angry |bb bbb bc bcb bbc b bddc bdb bdc bdbc
silly aa aaab aca acab adba add addc adad adc adbc
thirsty | dbaa dbab dca dcba dbca dda ddac dbad dcad dbacd
hungry | dbb dbbd dc dcb dbc dd ddc dbd dcd dbcd

one they  you yall yup me we mip yumi  all
tired --a --ab --c --cb --ba -- --d --db --cd --b
scared | --a --ab --c --cb --ba -- --d --db --cd --Db
sick --a --ab --c --cb --ba -- --d --db --cd --Db
happy | --a --ab -c- -c-b  --ac -- --dc --b --c --bc
sad -ba -bab -c -cb -bac - -bdc -bb -bc -bbc
excited | -ba -bab -ca -cab -bca - -cdc -b -cb -bc
angry | -b -bb -c -cb -bc - -ddc -db -dc -dbc
silly (aa) (aaab) (aca) (acab) --ba --d --dc  --ad --c --bc
thirsty | -b-a  -b-b -c- -cb- -bc- -d- -d-c¢  -b-d -c-d -b-cd
hungry | -bb -bbd -c -cb -bc -d -dc -bd -cd -bcd

Figure 11: Sequences used by a majority the population for each of the given
meanings (top). A potential analysis of the system in terms of a root plus
modifications (bottom). Sequences in parentheses cannot be made to fit into
this analysis.
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suffix. The rest of the paradigms for these two predicates differ substantially
from those of the first three predicates shown, but seem to be more similar
to the one for happy, and this similarity continues to the sequences for the
predicate angry, whose root form also has one character.

The first four entries in the paradigm for silly cannot be easily analyzed as
a root form with modifications as with the predicates above it. In particular,
the sequence for me is certainly not the bare root. Still, many of the entries
in this row are similar to those of the other predicates.

Sequences for thirsty and hungry, while also showing some similarities
to those of the other predicates, don’t completely conform to any of their
patterns.

5.2 Shared Trajectories Through Activation Space

Like any linguistic analysis, the one just outlined would open to question on
a number of issues were it proposed to account for the inflectional system of
a newly-described human language. However the analyses would be at least
provisionally justified by the fact that similar analysis techniques are known
to apply to other human languages, and seem to express deep regularities
among them. Of course this is not a human language, and so the plausibility
of the analysis has no such support. The existence of partial regularities in
the system can be used as a convenient way to group the sequences, but may
be entirely artifactual, and certainly does not entail that any sort of analysis
in terms of those regularities is involved in the agents’ interpretation of the
sequences.

A more plausible account, more consistent with the operation of recurrent
neural networks, is that characters and short sequences encode trajectories
through the vector space of network activation values. To express each of
the meanings with a distinct sequence, and to be able to correctly interpret
sequences, the weights of an agent’s network must be such that for each
meaning there is a sequence of characters that moves the network’s output
activations through a trajectory to that meaning vector.

For the members of a population of agents to communicate successfully,
the trajectory followed by each agent’s network output activations on an
identical sequence must be roughly similar. If they were to diverge substan-
tially at some point in the sequence, there would be little chance that the
sequence of remaining characters would bring them back together, such that
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they will both end up at the same vector of output values.

It is therefore likely that the systematicity observed in the communication
systems that emerge in the simulation runs is due to the networks acquiring
a shared set of mappings from partial sequences to transformations of their
output values. If this set of transformations can be composed to span the
set of meanings, the agents will be able to assemble sequences of characters
that will guide each other’s networks through trajectories in activation space
that will terminate in the correct meaning vectors.

This explanation is consistent with the sort of partial regularity seen in
the negotiated systems. For example in the system shown in Figure 11,
the supposed roots for the top predicates guide the agents output values to
vectors corresponding to the meaning corresponding to that predicate applied
to the referent me. The subsequences corresponding to the suffixes then move
the activation values slightly, changing only the values corresponding to the
referent.

On the other hand, this is not the only way that the output activation
values of the network can be guided to their correct values. Other partial
sequences will also move the activation values along specific paths, and the
agents will use them if the regular sequence doesn’t quite work. For ex-
ample the sequences bad and bab would have fit more consistently into the
system shown in Figure 11 to express express (we happy) and (all happy),
respectively. Apparently the former sequence does not quite bring the out-
put activation vector to the correct values, and so an additional ¢ is added,
indeed this final ¢ is used for all of the entries in the column except the
three supposedly regular entries. The sequence bab can’t be used to express
(all happy) because it is used for (mip happy). The additional ¢ is needed
to adjust the output vector to add a 1 in the position corresponding to the
ot (other) feature. (See Figure 3.) The ot feature also needs to be 1 in
meanings whose referent is we, and this seems to be the effect of the final ¢
in most of those entries.

It also possible that specific sequences used to guide the network acti-
vation values to correct values might be used for only a small set of the
meanings, or that meanings involving different predicates or referents would
use different sets of sequences. For example the sequence aa is used to ex-
press (one silly), and while this can’t be seen as conforming to the “root plus
suffix” analysis in much of the rest of the paradigm, the sequence ab can still
be used, as it is for other predicates, to adjust the meaning vector to express
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the referent they. In the entries for the referent yup, five of the predicates end
with ba, and four of the remaining predicates use a sequence that includes
bc, indicating that at least two routes to this predicate are available to the
agents. About half half of the predicates use one, and most of the rest use
the other.

This explanation also accounts for one aspect of the systems that emerge
in the simulations that is certainly an artifact, namely that most of them,
including the one just discussed, tend to express the predicate portion of
the meaning with the first few characters of the sequences. Recall from
Section 3 the predicate involves six of the values in the meaning vector with
the remaining four used to express the predicate. Since the networks generate
sequences by determining which character would bring their outputs closest
to the meaning being expressed, as determined by counting the number of
correct values, characters that modify the output values to get the predicate
correct will tend to be chosen. Even so, a few systems have emerged in which
the referent is expressed first. Simulations are currently being performed in
which predicates and referents are expressed with equal numbers of meaning
vector values.

5.3 Conveying Novel Meaning Combinations

To determine whether the regularities in a population’s communication sys-
tem enable members of that population to convey novel meaning combina-
tions, a simulation run was performed in which ten of the meanings were omit-
ted. The communication system that emerged in this simulation is shown in
Figure 12, with blank spaces indicating the omitted meanings.

After the simulation run was complete, one of the agents from the pop-
ulation was used to generate sequences for each of the omitted meanings,
and another agent was used to interpret them. The results are shown at the
bottom of Figure 12.

Even though the agents have never sent sequences for these meanings
before, nor have they ever (correctly) interpreted a sequence as one of them,
the agents are able to convey them with reasonably good accuracy, using
sequences that seem to obey the regularities of the negotiated system. The
fact that several of the sequences used for the new meanings are longer than
the entries in the paradigm supports the idea that that the systematicity
observed in the systems is due to the agents making use of a shared set
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one they  you yall yup me we mip yumi  all
happy dbad dac dcc bba dab dcb dbd dbc bbad
sad dada da dca dda dad dcd ddd dd ddad
angry | abba cbba cba bbba abb cbb bbbd bbcb bbba
tired aa ca ac ba acd ccd bcd bc bad
excited | aab cab ab cbc abd cbd bbd bbcd bbda
sick aabb cabb acb ccb bab ccbd bcbd bcb babd
hungry | aacb cacb accb ccc bacb acdb bcdb bccb  bacd
thirsty | aaa caa aca cca baad acad ccda bdca badad
silly aaab caab ada cda baaa adb cdb bdbd baabd
scared | aad cad ad cd baac add cdd bdd bd

(yall tired) cc

0 1 0 1 1 0 0 0 1 1

0.01 0.98 0.00 0.99 0.88 0.00 0.00 0.44 0.99 0.92

(yup excited) bbdaccca

0 1 1 1 1 1 0 0 0 1

0.01 1.00 0.97 1.00 0.99 0.53 0.00 0.06 0.00 1.00

(me sick) abdbd

1 0 0 0 1 0 0 1 0 1

0.99 0.02 0.00 0.00 0.99 0.17 0.22 0.06 0.00 0.99

(we hungry) ccedbdc

1 0 0 1 1 0 0 1 1 0

0.91 0.00 0.15 1.00 0.99 0.00 0.00 0.99 1.00 0.18

(mip thirsty) bddba

1 0 1 1 0 0 0 1 1 1

1.00 0.29 1.00 1.00 0.00 0.00 0.00 0.76 0.98 0.95

(yumi silly) bdaa

1 1 0 1 0 1 0 1 0 1

1.00 1.00 0.03 1.00 0.00 0.70 0.23 0.99 0.00 1.00

Figure 12: Negotiated communication system of a population for 90 of the
meanings (top). Blank spaces in the paradigm indicate meanings not used
in the negotiation. Sequences sent by a member of the population and the

meaning vectors of another member of the population when shown those
sequences, for some of the meanings left out of the original negotiation (bot-

tom).
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of mappings from partial sequences to trajectories in the space of output
vectors. Since the agents have never conveyed these meanings before, the
mappings they have acquired do not enable then to guide each other’s outputs
directly to the desired values in all cases. But since the mappings that they
possess are shared, the agents are able to compose longer sequences that are
correctly interpreted.

6 Conclusions

The negotiation model used in the simulations was arrived at after a num-
ber of different approaches, based on evolutionary simulations in which the
reproductive fitness of agents depended on their communicative accuracy,
failed to achieve anything like the results described above. While the pre-
cise reasons for these failures, and their significance, is unclear, the fact that
complex adaptive coordination can emerge from social interactions among
a population of agents is an important lesson, independent of any specific
relevance to language. The coordination is achieved in the simulations as a
result of a distributed process in which individuals learn by observing the
behavior of others, with no external guidance over the how the system ought
to develop.

I have argued elsewhere (Batali, 1993) that other representational and
Intentional phenomena can be understood as the result of processes of social
activity among populations of animals, whose details are influenced by the
animals’ cognitive abilities, by the external media in which their interactions
occur, and often by arbitrary historical contingencies. Such processes leave
enduring traces, for example as modifications to the external environment,
or as systematic regularities in the animals’ behavior, that can then become
a cognitive resource for the animals, enabling even more coordination of their
activity.

The most crucial assumption underlying the model involves the procedure
used to send sequences. As discussed in Section 2, the procedure requires that
an animal use its own cognitive responses to predict those of others. While
such abilities are rare among animals, the fact that existing hominoids pos-
sess them suggests that early hominids did too. The increasing complexity
of social organization seen during hominid evolution was most likely accom-
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panied by enhancement of all of the cognitive abilities that underlie social
activity.

As the hominids began to develop the abilities to use their own responses
to predict and influence those of others, situations might have arisen in which
such abilities could have been used to communicate information. With the
support of shared context, such communicative attempts could often have
been successful, even without without any coordinated system.

If they were capable of learning from each other’s communicative be-
havior, however, the simulations described in this paper suggest that early
hominids could develop systems to express structured meanings without any
innate language-specific traits. Their communicative behavior would have ex-
hibited systematic regularities from which some of the grammatical resources
of modern human languages might have emerged.
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