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Abstract
Understanding and defining the meaning of “action” is substantial for robotics research. This becomes utterly evident
when aiming at equipping autonomous robots with robust manipulation skills for action execution. Unfortunately, to this
day we still lack both a clear understanding of the concept of an action and a set of established criteria that ultimately
characterize an action. In this survey we thus first review existing ideas and theories on the notion and meaning
of action. Subsequently we discuss the role of action in robotics and attempt to give a seminal definition of action
in accordance with its use in robotics research. Given this definition we then introduce a taxonomy for categorizing
action representations in robotics along various dimensions. Finally, we provide a systematic literature survey on action
representations in robotics where we categorize relevant literature along our taxonomy. After discussing the current
state of the art we conclude with an outlook towards promising research directions.
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1 Introduction

In the beginning was the action∗ (von Goethe 1808, p. 81).
Inspired by the Gospel of John, Goethe used this nowadays
famous quotation in the third scene, first act of his famous
play “Faust”. Like Dr. Faust who back then struggled
with a proper translation for the Greek word “logos”,
similarly we nowadays struggle with the exact meaning of
the word “action”. Despite various attempts at formalizing
the notion of an action early in this decade, e.g., Davidson
(2001) or Jeannerod (2006), the controversy on the exact
nature of action is still active (see Section 2). Clearly,
such a lack of understanding and of an accepted definition
hampers research related to understanding human actions,
e.g., in neuroscience or psychology, but also computational
descriptions of action, e.g., in the field of robotics research.

Krüger et al. (2007) published a thorough review on
action recognition and mapping in the fields of computer
vision, robotics and artificial intelligence. They however stop
short of providing a clear definition of action itself. Yet,
Krüger et al. already provide a preliminary discussion of
some criteria relevant for characterizing the notion of action.
In our work, we build on these criteria (see Section 3).

More recently, Weinland et al. (2011) published a sur-
vey on vision-based methods for action representation, seg-
mentation and recognition. Despite providing a thorough
overview of existing approaches, their survey is limited to
categorizing approaches according to their (i) spatial repre-
sentation, (ii) temporal model, (iii) temporal segmentation,
and (iv) view-independent representation. In contrast, in our
work we aim to categorize action representations along many
more dimensions (see Section 3). Further, Weinland et al. do
not provide an underlying definition of action as a foundation
for their classification. Last but not least, Weinland et al. do
not consider the notion of an action’s effect which not

only since Jeannerod (2006) is considered an integral aspect
of an action representation but already dates back at least
to Bernstein (1996).

The goal of our survey is to define classification criteria
that are instrumental for a formal treatment of action
representations in robotics. We thus aim at capturing
the notion of action over a sufficiently broad range of
analytical viewpoints that have emerged from both their
theoretical interrogation but also from practical applications.
We further present a thorough investigation of existing
action-related research in robotics by categorizing relevant
publications according to these criteria in a systematic
way (see Section 4). As a result of this classification we
then provide a comprehensive and qualitative discussion of
existing research to identify both promising and potentially
futile directions as well as open problems and research
questions to be addressed in the future (see Section 6). To
the best of our knowledge our work is seminal in both
introducing a taxonomy for action representations in robotics
and an in-depth discussion of existing research motivated by
a quantitative study.

Contribution The core contribution of this article is the
introduction of a comprehensive taxonomy for categorizing
action representations in robotics. A systematic literature
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search (see Section 4) of the keywords action and repre-
sentation resulted in 1575 hits, which were systematically
reduced to 469 considered papers. Out of those, we identified
and categorized 152 major contributions in the field of
robotics. For each publication it was possible to categorize
the employed action representation as applicable. Given the
resulting classification we then discuss the current state of
the art of action representation in robotics (see Section 5).
Finally, on the basis of this discussion, we identify promising
directions for future research (see Section 6).

Intentional Limitations In this survey, only action
representations that have an application in the field of
robotics will be considered. Apart from that, we avoid
categorizing papers that just build on existing models (see
Section 4). Another limitation we impose on our survey is
the deliberate exclusion of any papers or articles discussing
plain controllers for implementing some movement. Though
one could consider such a controller an action representation
in some sense by arguing that it represents an “action” by
its goal, i.e., a setpoint, we argue that controllers do not
comprise an action representation simply by missing most
of the aspects discussed in Section 3.

2 What is an action?
Despite being subtle in its form, the question of what is an
action has a long history and probably first was investigated
by Aristotle in his study on animal movement De motu
animalius, where he contends that actions are justified as
of a logical connection between goals and knowledge of
effects (Russell and Norvig 2016; Nussbaum 1985),

But how does it happen that thinking
is sometimes accompanied by actions and
sometimes not, sometimes by motion, and
sometimes not? It looks as if almost the same
thing happens in case of reasoning and making
inference about unchanging objects. But in
that case the end is a speculative proposition
. . . whereas here the conclusion is which results
from the two premises is an action . . . I need
covering; a cloak is covering. I need a cloak.
What I need, I have to make; I need a cloak. I
have to make a cloak. And the conclusion, the "I
have to make a cloak" is an action.

Aristotle pursued his studies further in his third book of
the Nicomachean Ethics (Aristotle 1934). In his treatise—
though now primarily focusing on ethics by attempting
to answer the Socratic question of how men should best
live—Aristotle already apprehended the imperative notion of
human actions by attributing them a primary role in shaping
a virtuous character. He thence introduces three categories
of actions relevant to virtue, but also whether they are to be
blamed, forgiven or even pitied:

• Voluntary actions are the righteous actions done by
choice, i.e., on purpose. They result in increased
happiness (eudaimonia).

• Involuntary or unwilling actions are neither praised
nor blamed as in such cases no wrong action is chosen.
This strongly builds on ignoring of what aims are good
and bad.

• Non-voluntary or non-willing actions are bad actions
done by choice, i.e., on purpose. They are preferred as
all remaining options would be worse.

Admittedly, Aristotle did not discuss more specifically what
an action is and also how it may be represented in our
minds. Nevertheless, his thoughts are essential by clearly
outlining different types of actions, thus ultimately implying
that there must exist some internal representation which
allows choosing among which action to do given a deliberate
purpose. In contrast, if all actions are just hard-coded motor
responses to external stimuli and no higher-level cognitive
planning would precede action execution, such internal
representations of actions would be pointless.

2.1 Action in psychology
In his article Action-oriented representation, Mandik (2005)
discusses the nature of mental representations. Motivated
by decade-lasting discussions between proponents of both
underdetermined and determined (or active) perception,
Mandik presents arguments from both conservative embod-
ied cognition (CEC; or representationalism) and radically
embodied cognition (REC) towards the nature of an internal
representation of perception culminating in what he calls
action-oriented representation (AOR).

Classically, the school of CEC calls for the need of an
internal mental representation. This theory may be roughly
identified as (Mandik 2005, p. 287)

[. . . ] the view that one has a perceptual
experience of an F if and only if one mentally
represents that an F is present and the current
token mental representation of an F is causally
triggered by the presence of an F.

Mandik then argues that the representationalist analysis of
perception yields two crucial components: the represen-
tational component and the causal component. Whereas
the former’s job is to account for the similarity between
perception on the one hand and imagery and illusion on the
other hand, the latter is required to articulate the idea that
in spite of similarities, there are crucial differences between
perceptions and other representational mental phenomena
(e.g., the relevant mental representation of an F must be
caused by an F to count as percept of an F; Mandik 2005).

REC on the contrary argues against the explicit need
for internal representations by relying on active perception.
This essentially capitalizes on a perception-action cycle
on the sensori-motor level in that actions are directly
triggered by stimuli in the environment without the need for
internal representations (c.f. Gibson 1966, 1979). Mandik
argues however that active perception can be explained
in terms of the representational theory of perception by
acknowledging (Mandik 2005, p. 292)

[. . . ] that there are occasions in which out-
puts instead of inputs figure into the specifica-
tion of the content of a representational state. I
propose to model these output-oriented—that is,
action-oriented—specifications along the lines
utilized in the case of inputs. When focusing
on input conditions, the schematic theory of
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representational content is the following: A state
of an organism represents Fs if that state has the
teleological function of being caused by Fs. I
propose to add an additional set of conditions
in which a state can come to represent Fs by
allowing that a reversed direction of causation
can suffice. A state of an organism represents
Fs if that state has the teleological function of
causing Fs.

Mandik then defines action-oriented representations
(AOR) as any representation that has, in whole or
in part, imperative content. Mandik thus argues that
active perception—instead of rejecting the representational
theory of perception—can contribute to the representational
content of perception, and further, that percepts themselves
may sometimes be action-oriented representations (Mandik
2005).

It is evident from Mandik’s argument that internal
mental representations are necessary for perceiving and
understanding as well as interacting in the world. Further,
it is obvious that these representations are required to
subsume a certain amount of perceptual experience and
action knowledge allowing an agent to plan for desired
effects in the world. However, this still leaves us with
our initial question of what is an action? What are the
fundamental bits and pieces of both perceptual and sensori-
motor experience that require internal symbolization to
account for a mental representation of an action A?

Apart from Mandik, Jeannerod, in his famous book
“Motor Cognition: What the Body Tells the Self”
(Jeannerod 2006) provides an alternate treatment of
action representations. First of all, Jeannerod argues that
action representations must allow for mental simulation.
Consequently, he distinguishes between covert and overt
actions, where the former are the mental representations
and the latter the actual, overt movements. He thus
immediately attributes to action representations a functional
nature (Vosgerau 2009), and hence argues that representing
and executing an action is functionally equivalent. Secondly,
Jeannerod states that actions are represented by their
anticipated effect, that is, action representations essentially
entail a mental model of a needed future environmental
state. De Kleijn et al. (2014) further argue that such
a representation in terms of an action’s effects is
unrenounceable as it unlocks contextualization of action
control. This submission immediately relates to Jeannerod’s
third characteristic criterion of actions which is related to the
actual type of an action. Jeannerod submits that there are two
types of actions, viz. conceptual and non-conceptual actions.
The crucial difference is that action representations with a
conceptual content require an explicit representation of the
goal, whereas for non-conceptual actions the goal is readily
present in front of the agent and the action can be executed
automatically without an explicit internal representation of
the goal. This difference crystallizes in Jeannerod’s example
of intending to call someone via a phone. The first part of
this action is to grasp the handset which clearly requires
an internal representation of the goal—the phone itself—
prior to executing the action. At the time of the execution

however, the representation loses its explicit character and
the remaining action, i.e., dialing, is executed automatically.

Similar to Mandik’s treatise, it is also evident from
Jeannerod’s work that actions are internally represented.
Contrarily to Mandik however, Jeannerod attributes to
these representations a functional view by arguing that
representing and executing an action is functionally
equivalent. Whether one imagines or actually does an action
employs the same neural substrates and processes (Jeannerod
2006). Jeannerod immediately provides a clear distinction
between the resulting types of actions, i.e., conceptual and
non-conceptual, as well as their manifestation, overt and
covert, viz. being actually executed or just imagined.

2.2 Action in philosophy
Independently of the discussions in psychology,
philosophy—most notably Donald Davidson with his
philosophy of action—was looking for an answer to the
question of what is an action. Contrarily to CEC and REC
however, he aimed at identifying the relevant bits and
pieces that physically constitute an action, independently
of its mental representation. According to Davidson, an
action, in some basic sense, is something an agent does
that was intentional under some description (Davidson
2001). Davidson discusses this proposition in his famous
example of someone accidentally alerting a burglar by
illuminating a room, which she does by turning on a light,
which she does by flipping the appropriate switch. Davidson
is then concerned with the relation between the agent’s
act of turning on the light, her act of flipping the switch,
etc., to answer the question which configuration of events,
either prior to or contained within the extended causal
process of turning on the light, really constitutes the agent’s
action. It is clear that there exists no unique answer to
this question. Yet, the discussions caused by Davidson’s
example provide some insight into what may comprise an
action. One may for example favor the overt arm movement
that the agent performs, or the initiated causal process,
but also the event of trying that precedes and “generates”
the rest, i.e., the overt action. If for one second we stick
to the latter definition of action, i.e., the mental act of
trying, according to O’Shaughnessy (1997), this implies
willing. Now according to O’Shaughnessy, an action then
is defined as this mental act of willing which subsequently
causes neural activity, muscle contractions and an overt
actuation; happenings in the environment are just effects in
the extended causal chain but not part of the action anymore.
This however stands in stark contrast to De Kleijn et al. who
submit that actions are events that unfold in time and that
must be structured in such a way that their outcome satisfies
current needs and goals (De Kleijn et al. 2014). Clearly,
such a planned execution requires effects to chain the various
deliberate events together.

2.3 Action in neuroscience
From a biological perspective, neuroscientists tried to link
action with the neural substrates that generate it. These
studies belong to the more general research on the production
of task-adapted serial behavior in human beings. We
summarize here the results from a roboticist’s perspective
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but for in-depth studies on action representation and neural
substrates of motor control, see Grafton et al. (2009)
and Hardwick et al. (2017) among others.

Researchers initially suggested that the hierarchy in
information related to action (i.e. the goal constrains
the motor programs to be executed) was reflected by
a hierarchical organization of the brain areas. Keele
and Jennings (1992) used serial reaction time tasks in
combination with attention to assess sequence learning.
Their results suggest that learning is easier when structure
exists in the sequence, implying that the learnt representation
relies on the combination of elementary patterns ordered
given the task, hence some hierarchy.

Grasping studies also highlighted the influence of abstract
information on motor execution. Jeannerod (1984, 1986)
highlighted the interdependency between the formation of
the grasp and the reaching movement, the latter depending
on the former, whereas Rosenbaum et al. (2001, 1992)
highlighted how the the hand shape of the grasp depends on
the geometry of the object, how the tool will be used and how
comfortable is the final posture.

Computational models have included action representa-
tion with both explicit (Cooper and Shallice 2006) and emer-
gent hierarchy (Botvinick 2008) and successfully explained
behavioral results. However, these models stayed at a repre-
sentational level and did not directly adress the question of
which neural substrates support the representation of action
itself. A first proposition by Fuster (1999) tried to map
anatomy with the expected hierarchy in the action represen-
tation. Imaging studies (Roland et al. 1980a,b) showed that
motor cortex is only active during real movement execution
whereas the supplementary motor area (SMA) is active
during both executed and imagined movement. These results
were interpreted as a sign that motor cortex and SMA play
a role at different levels of abstraction and thus support the
anatomical/functional hierarchy hypothesis.

However, several arguments come in opposition of a
direct mapping between anatomy and functional hierarchy.
We focus here on two of the four developed by Grafton
et al. (2009, p. 643). First, a hierarchical model assumes
a clear separation between the different levels and that
only the lowest level is in charge of producing movement.
However, it has been shown that even higher-level areas
(premotor and parietal cortex, extrapyramidal brain stem
pathways) project to the spinal cord and thus potentially
influence the movement (Dum and Strick 1991, 1996).
Secondly, the conceptual implication of a strict anatomical
hierarchy raises the problem of the homonculus: if there
is a decisional component on top of the architecture, this
component itself may be organized hierarchically including
a decisional component, etc. The resulting model would be
complex which does not fit with the results on how fast
and adaptable the action decision-making process actually
is (Desmurget and Grafton 2000).

More recent studies of the anatomy have highlighted the
existence of multiple parallel parietal-premotor-prefrontal
loops in the brain. These loops seem to integrate multimodal
sensory information rather than being tied to one modality
only. They have been associated with object-centered
action, tool use and reaching (Johnson and Grafton
2003; Rizzolatti and Luppino 2001; Rizzolatti and Matelli

2003). Grafton et al. suggest that the hierarchy of action
representations is thus not tied to the anatomy itself but rather
that (Grafton et al. 2009, p. 643)

[. . . ] an anatomical organization with mul-
tiple parallel parietal-prefrontal and premotor
pathways supports a multitude of relative hier-
archies that can be flexibly recruited as a func-
tion of task demands, experience, and context.
In this framework, there are dissociable func-
tional anatomic substrates, but these are not
constrained by a fixed hierarchy. This shifts the
focus of inquiry to understanding representa-
tional hierarchies that are highly flexible and
goal based.

This second hypothesis has been investigated by
focusing on the goal representation in motor execution
studies involving grasping and bimanual coordination tasks.
Grasping tasks directly map the goal to the target object, thus
the task can be reframed as the problem of finding the proper
transform between the perceived object and the hand. The
anterior IntraParietal Sulcus (aIPS) in the parietal cortex has
been shown to be critical for computing these sensorimotor
transformations. The problem is then how the transformation
information and goal representation are merged, that is, how
does the aIPS perform the sensorimotor integration of the
information?

Due to its connectivity to aIPS, the ventral premotor cortex
is supposed to hold the goal representation. The hierarchical
anatomy hypothesis would suggest that the sensorimotor
information related to the target object is transformed into
a goal representation. However, the hypothesis of a flexible
hierarchy suggests that aIPS merges the sensorimotor
and goal information and produces the constraints on
the motor commands. This is supported by transcranial
magnetic stimulation (TMS) studies (Tunik et al. 2005).
Tunik et al. studied reaching and grasping tasks where the
target object orientation (thus the goal) was changed very
fast. The TMS was shown to disturb the ability of subjects
to adapt to changes of the goal. The TMS blocks not only the
adaptation of the grasp aperture but also the arm orientation.
The authors claim that these results are better explained
by the fact that aIPS does sensorimotor integration of the
goal information rather than that TMS disrupts lower motor
processes such as grip aperture. Consistent results are found
in bimanual coordination: the change in the task goal changes
the amplitude of the neural activity but does not change
which regions are activated. Hence, there are areas (ventral
premotor cortex and anterior intraparietal sulcus) in charge of
maintaining the goal information, consistently recruited over
tasks, that, when disturbed, have an effect on the adaptation
of movement.

A similar dichotomy is shown in action observation
tasks: Using the fMRI adaptation phenomenon (Repetition
Suppression or RS), Hamilton and Grafton (2006) were
able to show that the left aIPS is sensitive to which object
is grasped (thus the “goal” of the action) whereas the
information on the object position produces RS in other
parts of the brain. They interpret this double dissociation
as a result in favor of hierarchy between the goal of the
action and the kinematic information of the action. In further
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studies, they manipulated the shape of the grasp (Hamilton
and Grafton 2007) or the outcome of actions (Hamilton and
Grafton 2008) and were able to highlight segregated RS
effects in specific areas of the brain. In the end, they argue
that (Grafton et al. 2009, p. 648)

[. . . ] together, these three experiments
support a model of representational hierarchy
that distinguishes action means, kinematics,
object-centered behavior, and ultimately, action
consequences. The decoding of object-centered
action appears to be strongly left lateralized,
whereas the decoding of more complex action
intentions arising as a consequence of the action
engaged bilateral frontal-parietal circuits.

Actions are thus not uniquely represented in the brain
but the representation is rather generated by the recruitment
of several areas, with an apparent distinction between the
goal-level information and the motor-related information.
Moreover, Hardwick et al. (2017) recently did a meta-
analysis on more than a thousand works from the literature
on motor imagery (the mental rehearsal of an action),
action observation (observing others’ action execution)
and movement execution (the overt interaction in the
environment). They identified a consistent recruitment of a
network of cortical or subcortical regions for each function.
Both motor imagery and movement execution recruit the
putamen which is involved in movement regulation. The
body representation, encoded by the cerebellum, is also
involved in motor imagery and movement execution along
with the anterior and posterior midcingulate cortex for
motor control. Action observation however does not recruit
subcortical structures. It recruits the premotor parietal and
occipital regions but less than during motor imagery.

These results from biology should teach roboticists two
main lessons:

• The outcome of an action is a crucial part that defines
it. There are dedicated areas to encode the goal and use
the goal information to constrain the movement. Thus,
an action in robotics should be defined by the goal it
is intended to achieve, that is, its expected effects. The
production of movement is then adapted to this goal.
Thus, robot controllers should be flexible rather than
reproduce stereotypical motions.

• Action requires multiple types of information that
are not encoded in a central representation but rather
distributed over and shared among multiple brain areas
depending on the functional goal. For robotics, this
argues in favor of a flexible representation of an action
that links goal, movement and the currently-perceived
scene.

Summarizing the above discussion clearly shows that
despite being a core aspect of mammalian behavior, today
we still lack a precise answer to the question of what is an
action. Yet, this discussion however also shows that actions
(i) are internally represented (c.f. Rizzolatti and Luppino
2001; Rizzolatti and Craighero 2004), (ii) are tightly bound
to perception as a genuine source of information for action
selection (Tunik et al. 2005), and (iii) yield effects which

play a crucial role in shaping one’s behavior (Hamilton and
Grafton 2008).

2.4 Action in robotics
The notion of action occupies a paramount role in robotics.
This simply stems from the circumstance that in order to
meaningfully and intentionally interact with the world a
robot requires knowledge about when to apply a specific
action in order to achieve desired effects in the world. As
Newton writes in her recent work on understanding and self-
organization (Newton 2017, p. 5),

Understanding is tightly coupled with the
need of a living organism to take action.
Understanding involves knowing how we might
perform goal-directed actions relative to the
environment. The experience of understanding
is a feeling that the action affordances of a
situation are not entirely unclear. Action (as
opposed to reaction) requires imagery, including
motor imagery, that can be used in the guidance
of action.

Clearly, appropriate action representations are thus
paramount for bootstrapping the development of an
understanding of the world and ways an autonomous agent
can meaningfully interact with this very world.

This paramount role of action representations was already
pointed out by Krüger et al. (2007). In their survey they
discuss the meaning of action at different levels in robotics
from plain low-level sensory observations to high-level
cognitive recognition and planning tasks. Krüger et al. argue
that in order to nail down the meaning of action in
robotics needs to address several areas, viz. observing and
imitating others, control of one’s own body, and learning of
affordances (Zech et al. 2017). Their subsequent discussion
provides an initial but yet unsatisfying answer to what is
an action. However, we can clearly see that perception,
embodiment, actuation and goal representation are core
aspects of actions. We thus conjecture that such information
requires a representation in order to be recallable. On the
other hand it is necessary to talk about representations
in the context of robotics as symbolic information, i.e.,
representations of knowledge, is crucial for computation.
Aligned with the above discussion, we propose the following
seminal definition of the notion of an action from a
roboticist’s stance in the next section.

2.5 A Seminal definition of action from a
roboticist’s stance

Motivated by the discussions so far we define the notion of
an action for robotics as

• something an agent does that was intentional under
some description,

• is caused by both the agent’s current internal state and
external percepts,

• is adaptive and deterministic to achieve desired effects,
• is learnt and symbolized while observing and imitating

other agents,
• is mechanically effective,
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• and primarily represented by its anticipated effects,
that is, the goal.

Clearly, this definition is not final. However, we claim that
it provides an initial basis for discussing what information,
and especially in which form, eventually is required in order
to elicit a general representation of actions for robots. It
is obvious that perceptual aspects play a crucial role by
virtue of the mutual relationship between perception and
action (Bamert and Mast 2009). Further, learning plays an
important role. Analogously to human development, one of
the long-term goals in robotics research is to equip agents
with robust learning capabilities about their environment
and their own embodiment. Learning new means to interact
with the environment, i.e., new actions, is paramount as
not all situations an autonomous agent will experience are
predictable. Thus, whereas providing initial knowledge about
action bootstraps an agent’s autonomy, the capability to
adapt motions related to actions and subsequently learn new
actions from experience is necessary to allow the agent to
achieve novel effects that go beyond its current experience.
As highlighted in Section 2.3, this can be achieved by
integrating observations and experience from early sensory
areas to higher-order cortical areas (c.f. Hasson et al. 2015).

Another important aspect of actions is their mechanical
effectivity by causing overt changes in the environmental
state; lacking a mechanically effective nature reduces an
action to a mere gesture (Hobaiter 2017). Last but not
least, actions—at least in the context of robotics—require
external information that can be symbolized internally for
goal-driven, behavioral planning. As already pointed out
by Steels (2003), action representations are inevitable for
planning. Given this seminal definition, in the next section
we introduce our taxonomy for action representations in
robotics.

3 Classification criteria for action
representations

Given our discussions from Section 2 we can now
introduce our taxonomy and its classification criteria for
action representations in robotics. Clearly, a sound notion
of action is paramount in that its representation for a
robot is successful. Motivated by this we thus define
an action representation in robotics as the union of an
underlying action model and a computational model.
Consequently, the action model deals with perceptual,
structural, developmental and effect-related aspects, that is,
the nature and embodiment of actions. In contrast, the
computational model addresses low-level, implementational
aspects of the mechanics of actions. Figure 1 gives an
overview of our taxonomy and its classification criteria.

Before now discussing the criteria from Figure 1 in detail
in Sections 3.1 and 3.2, we want to remark that if a criterion
is not specifically addressed in a given publication, it is
assigned not specified.

3.1 Action model criteria
Action model criteria serve to asses the underlying “mental”
action model of an action representation regarding its

perceptual, structural, developmental, and effect-related
aspects.

3.1.1 Perception Perceptual aspects study the means by
which an autonomous agent employs different aspects of
perceptual input for recognizing and memorizing actions in
the environment. This dimension is standing in reason when
considering Mandik’s claim that perception and action are
tightly coupled (Mandik 2005). An even stronger argument
towards this tight linkage is given by Tucker and Ellis
(1998) in arguing that seen objects automatically potentiate
components of the actions they afford. Thus, one should
consider visual inputs as one of the main drivers demarcating
representations of actions.

3.1.1.1 Selective Attention Selective attention is
becoming more and more popular in vision research,
not least because of the impressive success of Deep Q-
Learning (Sorokin et al. 2015). Naturally, selective attention
is an important process for early action selection (Cisek
and Kalaska 2010). Further, it allows noise and irrelevant
information to be filtered out, focusing on what is important
and relevant, thus raising awareness of one’s own actions and
ultimately culminating in conscious motor control (Webb
et al. 2016). Thus, selective attention is either present or
not (see rows 1 or 7–11, and 2–6 or 16–39, respectively, of
Table ??).

3.1.1.2 Granularity The granularity of the perceptual
aspects of an action are important when it comes to
generalizing actions. Clearly, in the context of a scene,
actions can be perceived at different levels of granularity:

• local implies that an action model only considers local
information, i.e., the part of an object that is relevant
for doing the action like the handle of a hammer. As
in the case of the perspective (c.f. Section 3.1.1.3)
this comes with both advantages and disadvantages.
For example, the agent may be capable of immediate
interaction with the object upon recognizing a part
but may fail to generalize its knowledge to different
situations due to the lack of additional semantic
information regarding the context in which the action
is performed (see rows 34, 69 or 72 of Table ??).

• meso implies that an agents perceives an action at
the level of complete objects instead of only specific
parts. This immediately allows an agent to acquire
additional semantic information on the object itself
enabling easier generalization of an action to different
contexts as the agent has a more elaborate idea of what
it can and cannot do with an object (see rows 1–2 or
35–38 of Table ??).

• global implies that an agent perceives an action at
the scene level. That is, not only does it perceive the
concrete movements and objects involved but is also
able to perceive the environmental context in which
the action is performed, thus enabling consideration of
interactions in the environment. Clearly, this allows an
agent to easily generalize actions to novel contexts as
it has acquired a complete picture of the circumstances
under which an action can be performed. Observe
however that this level of granularity does not readily
imply generalization of the action (c.f. Section 3.1.2.4;
see rows 3–4, 9 or 11–12 of Table ??).
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Sequencing

Generalization

Prediction

Learning

Aquisition

Motivation

Exploitation

Discretization

Grounding

Associativity

Correspondence

Features

Method

Training

{yes, no}

{exteroceptive, proprioceptive, both}

{local, meso, global}

{limb, agent, observer}

{atomic, compound}

{yes, no}

{yes, no}

{yes, no}

{exploration, demonstration, hard
coded, ground truth, language}

{classification, regression, inference,
optimization}

{effect prediction, single-/multi-step
prediction, planning, recognition,
language, self assessment}

{online, offline}

{intrinsic, extrinsic}

{continuous, categorical, both}

{yes, no}

{unidirectional, bidirectional}

{body, environment, both}

{mathematical, biomimetic}

{supervised, self-supervised, semi-
supervised, unsupervised}

{simulation, real robot, benchmark,
virtual reality}

{ }

{ }

Figure 1. Overview of our taxonomy for categorizing action representations in robotics. For the sake of clarity, the choice not
specified is excluded.

3.1.1.3 Perspective The perspective eventually nails
down the reference frame of the perceived action. In the
case of autonomous agents, multiple perspectives may apply
given how the agent perceives and memorizes an action. We
claim that there are three relevant perspectives autonomous
agents can employ:

• limb implies that an agent learns actions with respect
to one of its limbs, e.g., an arm or the end-effector only.
The rationale is that our limbs are the primary means
of interaction with the environment. This perspective

has the advantage that an agent may easily plan and
adapt its actions locally, however may fail to do so at
a global scale (see Section 3.1.1.2). Observe that this
choice may imply the need for selective attention to
properly isolate observations (see Section 3.1.1.1; see
rows 27, 38 or 42 of Table ??).

• agent implies that an agent perceives actions with
reference to its whole body. This clearly has the
advantage that an agent is able to plan and redo
actions at a scale relevant for his body, yet it may
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fail to capture fine-grained local aspects of an action.
Compared to limb this choice usually refers to whole-
body actions (see rows 2 or 5–6 of Table ??).

• observer implies that an agent learns actions by
observing them and associating them to the frame of
reference of the agent executing the action, e.g., agents
perceive actions from a third-person perspective.
Clearly, the resulting action is represented at a
global scale, yet the agent is required to—prior to
execution—map the action into its own reference
frame (see rows 22–24 or 30–32 of Table ??).

3.1.1.4 Stimuli Stimuli, either external or internal, play
an important role for action learning and representation
as they encode relevant information that (i) triggers, (ii)
monitors, (iii) allows adaption of an action both prior
and during execution. Clearly, such stimuli may have
different sources, e.g., internal or external. This criterion thus
considers two types of stimuli:

• proprioceptive stimuli which relate to stimuli that are
produced within the agent and its embodiment, e.g.,
force readings. Such stimuli are essential in that they
enable monitoring the self during action execution (see
rows 72–73 or 83 of Table ??).

• exteroceptive stimuli which relate to stimuli that are
generated in the external environment, i.e., interaction
possibilities in the environment (affordances). Such
stimuli are necessary for an agent to perceive
the effects of its actions in the environment and
subsequently replan or perform online adaptation of
its movements to achieve its intended goals (see rows
30–38 or 40–60 of Table ??).

Observe that this is a multi-choice criterion, i.e., an agent
may as well consider both proprioceptive and exteroceptive
stimuli for establishing an action model (see rows 2 or 5–7
of Table ??).

3.1.2 Structure Structural aspects of the action model
discuss the capacities of the representation in terms of
cognitive capabilities it opens up to an agent. They are
crucial for planning and reasoning for action selection in any
given context. From an environmental perspective, structural
aspects additionally discuss how the actions are organized in
the environment.

3.1.2.1 Competition Obviously there may not always
exist a single action that achieves an intended effect but
instead a variety of actions equally allowing an agent to reach
its goal, i.e., multiple actions are equivalent in terms of their
effects but differ in their overt manifestation. To be able
to select the ideal action, an action model is thus required
to allow for competition among actions such that the agent
may always choose the most suitable and efficient action.
However, we do not attempt to study the internals of action
competition but rather whether a model allows for it or not.
Thus, Competition is either present or not. (see rows 1–7 or
10–14, and 8–9, 15–16 or 18–19, respectively, of Table ??).

3.1.2.2 Abstraction Traditionally an action is consid-
ered atomic by triggering a specific movement applied in
a specific context to achieve an intentional effect. However,
considering actions only at such an atomic level subsequently

hinders an agent to plan in terms of action sequences
composed of a set of atomic actions. Our taxonomy thus
considers both of these levels of abstraction as this ultimately
enables an agent to reason in terms of higher-level actions
and their goals:

• atomic actions encapsulate a single intentional effect.
Atomic at this implies that an action cannot be further
decomposed into smaller actions. Observe however
that this does not restrict an atomic action to consist
of a series of movements. For example, opening a
drawer requires placing the gripper by moving the arm
towards it, closing the hand around the handle, and
subsequently retracting the arm (see rows 1–7 or 9–22
of Table ??).

• compound actions on the contrary are actions that
themselves consist of multiple atomic actions. That
is, compound actions describe sequences of actions
where these actions are combined and conditioned
on their intermediary, intentional effects. Similarly to
atomic actions, the agent usually aims at achieving
again a single intended effect, yet at a larger timescale
(see rows 23, 59–60 or 63 of Table ??).

Observe that this is a multi-choice criterion, i.e., an agent
may as well consider both atomic and compound actions
when building its internal repertoire of action models (see
rows 8, 58 or 100 of Table ??).

3.1.2.3 Sequencing Being able to sequence actions
eventually allows an agent to join both atomic and compound
actions to reason about higher-level action goals and to
achieve a variety of intended effects. Yet, we want to
clarify that sequencing of actions does not readily imply
that an agent is able to represent compound actions (see
Section 3.1.2.2). Sequencing solely refers to the ability to
generate long-term plans that may yield a variety of effects.
Further, this criterion by no means studies the means of
sequencing. Thus, sequencing is either present or not (see
rows 1, 5 or 39–40, and 2–4 or 29–34, respectively, of
Table ??).

3.1.2.4 Generalization One of the most crucial aspects
of autonomous robots is the capacity to generalize acquired
knowledge to novel situations. Clearly, such a capacity
places demands on the action representations. What would
be the benefit of learning an action if it cannot be generalized
to novel situations? Our taxonomy thus also studies this
aspect of action representations as it holds a crucial factor
for the success of an action representation. Again, however,
we are not interested in the actual means of generalization at
a computational level but just in whether the model allows it
or not.Thus, generalization is either present or not (see rows
1–21 or 23–60, and 84, 104 or 132, respectively, of Table ??).

3.1.3 Development Developmental aspects of an action
relate to the means by which an agent is able to process
new information to extend its action knowledge. Observe
that this dimension is strongly tied to the perceptual aspects
(see Section 3.1.1) of the action model in that the percepts
ultimately constrain what can be learned. However, contrary
to perceptual aspects which study how the agent perceives
the environment for interacting with it, developmental
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aspects study how the agents learns to interact with its
environment.

3.1.3.1 Exploitation Available action knowledge can be
exploited in different ways. However, different ways of
exploiting one’s knowledge result in different ways of
how one subsequently interacts with the environment. Over
the last decades roboticists have studied different ways of
exploiting action knowledge where the range varies from
selecting actions for reactive behavior to reasoning about
actions for higher-level cognition:

• effect prediction of actions is an important capacity
for autonomous agents as it allows them to understand
both their environment but also their embodiment
in terms of what they are capable of achieving.
Additionally, effect prediction is a precursor for
planning at large timescales (see rows 25, 64 or 76 of
Table ??).

• single-/multi-step prediction enables agents on the
grounds of their immediate percepts and motivation
to first search applicable actions and subsequently
sequence them together given the predicted effects, or
just to execute the most suitable action (see rows 1–2,
6 or 9–12 of Table ??).

• planning, in contrast to single/multi-step prediction,
cannot be done by exhaustive search. Rather,
planning is implemented by reasoning over symbolic
representations of both the environment and the
agent’s percepts and motivation, as well as its
internally-symbolized action repertoire (see rows 13,
19 or 22 of Table ??).

• recognition of actions and activities of others is crucial
for autonomous agents that are supposed to help in our
daily lives. Observe that this choice relates to effect
prediction, yet at a different level. Whereas effect
prediction ultimately allows an agent to predict what
was the intention, action recognition allows an agent
to already reason about how to achieve the intended
goal instead of just capturing the sole intention (see
rows 3–4, 7–8 or 16–18 of Table ??).

• language enables agents to communicate with
other agents by an important high-level cognitive
ability. Agents exploiting their action knowledge by
language ultimately are capable of communicating
this knowledge in order to instruct others by means
of teaching. Similarly, agents can also learn from
spoken instructions (see Section 3.1.3.5; see row 52
of Table ??).

• self-assessment of one’s own capabilities unlocks to
an autonomous agent the possibility of reasoning
about its developmental state. This readily aligns
with Jeannerod’s famous idea that our actions tell
us about ourselves (Jeannerod 2006). Further, being
able to assess one’s self and one’s capacities and
consequently knowledge gaps immediately allows one
to tackle the exploitation vs. exploration trade-off
by improving learned or acquiring new knowledge
(c.f. Section 3.1.3.2).

3.1.3.2 Motivation Clearly an agent needs some kind of
motivation that drives its process of knowledge acquisition.
Such a motivation may either be external or internal.

The former relates to external triggers, usually externally-
imposed goals the robot is to achieve. The latter refers to
internal motivations with no separable (clearly observable)
outcome by an instrumental value (Ryan and Deci 2000).
Consequently, this criterion has two possible choices:

• extrinsic motivation generally relates to external
triggers that drive a robot to acquire new action
knowledge. Observe that such extrinsic motivations
may at some point overlap with intrinsic motivation
(see below) in the case that an agent “realizes”—
despite being externally imposed—that following
some trigger may result in an overall improvement. In
such an event we argue similarly to Ryan & Deci that
this still should be considered external, as the original
trigger is externally imposed (Ryan and Deci 2000; see
rows 1, 26 or 33 of Table ??).

• intrinsic motivation relates to internal triggers that
drive the robot towards fostering or acquiring
novel actions. The difficulty arising here is that
robots generally are not able to deal with non-
separable consequences like joy or satisfaction, which
commonly are considered as triggers for intrinsically-
motivated behavior (Ryan and Deci 2000). Yet,
discussing this question is not the goal of our work,
which is why we deliberately leave this question
unanswered. Apart from that, intrinsic motivation
has the disadvantage that the robot has to confront
the exploration vs. exploitation trade-off, i.e., does
it learn new actions or foster existing actions? On
the contrary however, being intrinsically motivated
enables an agent to learn what it is capable of and thus
to develop an understanding of its embodiment (see
rows 9, 106 or 152 of Table ??).

Observe that this is a multi-choice criterion, i.e., an agent
may be both extrinsically and intrinsically motivated in
learning new actions.

3.1.3.3 Prediction After having learned new actions an
agent needs the capacity to predict when a certain action
is applicable (or required) given both its percepts and its
motivation. Obviously, this criterion has a strong relation to
the underlying computational model of our taxonomy (see
Section 3.2) by relying on the mathematical tools employed.
However, we argue that there still is a need for this criterion
in the developmental dimension of our taxonomy, as properly
deciding which action to take is a core aspect of developing
sound and complete action knowledge:

• classification relates to agents which relate their per-
ceptual input patterns to concrete categorical outputs.
In this spirit, an agent identifies classes of actions
which it implicitly relates to similar input patterns by
defining a mapping from continuous to discrete spaces.
Observe that classification transparently enables gen-
eralization (see Section 3.1.2.4; see rows 1–4 or 6–7 of
Table ??).

• regression relates to agents which estimate the proper
action to take given relations in its perceptual inputs.
That is, given its stimuli an agent learns a regression
function that maps from continuous to continuous
spaces (see rows 9, 11 or 15 of Table ??).
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• inference is a naturally inspired mechanism where an
agent uses a set of acquired facts (existing knowledge)
and hard-coded rules to infer new facts (novel
knowledge), i.e., which action to take in a specific
context. The rules may be represented as logical
formulas, connections within graphs, or decision trees.
Formally, this defines a mapping from discrete to
discrete spaces (see rows 14, 19 or 31 of Table ??).

• optimization is a purely mathematically-inspired
mechanism to learn the best expected outcome given
some input. Using it, an agent chooses an action
that either maximizes a reward or minimizes a loss.
Formally, this defines a mapping from either discrete
or continuous to continuous spaces (see rows 5, 8 or
26 of Table ??).

3.1.3.4 Learning Acquisition (see Section 3.1.3.5) of
new information is an important capacity for autonomous
agents to avoid stagnation. However, acquisition is only part
of the deal. An agent also needs to be able to learn from this
newly acquired knowledge in order to evolve. The means of
learning are crucial for the development of both the agent and
its internal action model. Our taxonomy studies this criterion
by two possible choices:

• offline learning characterizes agents that first acquire
data (or are provisioned with already-collected data)
and subsequently employ this data for offline learning
to acquire new knowledge. A drawback of this is that
the agent may not be able to immediately react to
changes in the environment or its embodiment, or to
validate the learning outcomes itself in the real world
(see Section 3.1.4.2). Yet, learning can be shaped more
efficiently compared to online learning (see below; see
rows 1–8 or 11–13 of Table ??).

• online learning poses novel challenges to an agent,
i.e., incomplete data and a large amount of noise and
irrelevant data. That is, an agent, while exploring its
environment to collect new data, is faced not only
with the challenge to learn from this very data but
also to filter out the relevant bits and pieces (c.f.
Section 3.1.1.1). Despite this disadvantage, online
learning comes with the advantage of immediate
adaptability to changes in both the environment and
the embodiment (see rows 9–10 or 14–15 or 25 of
Table ??).

3.1.3.5 Acquisition To be able to learn something new
an agents needs to be provided with information it is able to
process. Over the years, the robotics and machine learning
community have drawn on various formats of information
provision for agents. Clearly, each of those come with their
unique advantages and disadvantages, which however are not
the focus of this article. This criterion thus does not study
advantages or disadvantages of the means of information
provision but instead how the agent is provided with this
novel information:

• hard coded implies that an agent generally does not
acquire new knowledge but rather is provided with
an initial set of, e.g., rules and facts about the world
which allow it to shape its behavior. Clearly, such an

agents stagnates until its knowledge base is manually
extended (see rows 17, 48 or 52 of Table ??).

• ground truth implies that an agent acquires new
knowledge by learning to relate specific input stimuli
to actual outputs (e.g., motor commands) for achieving
a desired effect. Agents thus are able to learn but
only if provided with valid feedback on their choices.
Observe that ground truth traditionally is a manually-
specified feedback signal that does not adapt to
changes and may bias the learner (see rows 16 or 18–
20 of Table ??).

• demonstration implies that an agent learns from
another agent or human teacher by being instructed
on how to perform specific actions. This kind of
acquisition comes with the advantage that the agent
can immediately relate what it is shown to itself
resulting in more efficient learning (see rows 1, 3 or
5–8 of Table ??).

• exploration relates to agents that learn by exploring
their environment by their own means, e.g., motor
babbling. Being able to acquire new knowledge by
exploring however requires the agent to be able to
perceive and classify effects and changes in the world
such that it can make sense of its actions (see rows 9,
14 or 33 of Table ??).

• language probably is the most difficult but also most
advanced means of acquiring novel action knowledge.
The format may have lots of different variations, from
direct imperative instructions (which are arguably the
easiest to understand) to scene explanations from
which the agent is required to extract the relevant
bits and pieces that describe the action it is observing
and is supposed to acquire. Clearly, being able to
learn actions by language is an advanced, high-level
cognitive ability and thus hard to achieve (see rows 22,
60 or 70 of Table ??).

Observe that this criterion is again multi-choice, i.e., the
means by which an agent acquires new knowledge are not
restricted to just one source (e.g., an agent may learn about
new actions by both being demonstrated what to do and at
the same time being told what is actually done; see rows 11,
58 or 86 of Table ??).

3.1.4 Effect As already claimed by Jeannerod (2006),
in humans, actions are represented by their effects. Our
taxonomy reflects this claim by containing a distinct
dimension to study effect-related aspects of action models.
Clearly, our notion of effect does not immediately
correspond to a “mental” representation of an action.
Nevertheless, it is an important aspect for studying the
faithfulness of an action representation and its underlying
action model.

3.1.4.1 Discretization Effect discretization studies the
granularity of effect predictions that an action model
supports. Effects may be either easily categorizable by
clustering similar effects or they may reside in a continuous
spectrum. In our taxonomy, the discretization of effects
thence can fall into one of two categories:

• categorical effects generally relate to individual
and different effects. Thence, effects under this
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category generally describe fixed amounts or clearly-
distinguishable events as a result of performing an
action. Observe that both numeral and symbolic effects
are subsumed by this choice (see rows 2–4 or 7–8 of
Table ??).

• continuous effects relate to fuzzy, boundless effects
along a continuous dimension. Consequently, effects
under this choice generally relate to real-valued
action outcomes that are measurable along continuous
spectra (see rows 5, 9–10 or 12 of Table ??).

Observe that this is a multi-choice criterion, i.e., an agent
may as well consider both categorical and continuous effects
for establishing an action model (see rows 1, 5 or 37 of
Table ??).

3.1.4.2 Grounding Grounding of effects relates to the
circumstance whether an action has or has not been executed
in a real world environment by observing the intentional
effects at the same time. Obviously, this criterion is of
utter importance as it expresses the maturity of an action
model. If once executed in a real-world setting with the
intended effects observed, the action is both feasible and
properly represented, whereas if not (i.e., only executed in
simulation) one cannot guarantee that an action is actually
doable as intended. Thence, grounding binds intended effects
to observable real-world events. Thus, grounding is either
present or not (see rows 1–2, 5–7 or 9, and 3–4, 8 or 10–13,
respectively, of Table ??).

3.1.4.3 Associativity Associativity of effects relates to
the capacity of both predicting the effects of an action
as well as predicting a necessary action to achieve a
desired and intentional effect (Paulus et al. 2011). More
precisely, this dimension does not directly investigate the
mechanism for such capacities but instead whether the action
model possesses this capacity and further, the nature of
this capacity. Effect associativity can fall into one of two
categories:

• unidirectional action-effect associativity categorizes
an action model as only being able to infer the effects
of executing a specific action. Consequently, an action
representation lacks the capability of imagining which
actions to execute to achieve a desired effect. On the
contrary, given an action the model is readily capable
of predicting the effects (see rows 2–13, 17 or 19–20
of Table ??).

• bidirectional action-effect associativity categorizes an
action model as possessing the capacity to predict
relevant actions given some desired effect. This is
ultimately related to mirror neurons which upon
observation of an action (that involves and object)
immediately activate neural populations relevant
for motor control. This immediately allows for
mental simulation of actions. However, observe that
imagining does not readily trigger a representation
(Elsner and Hommel 2001; Rizzolatti and Luppino
2001; Rizzolatti and Craighero 2004; see rows 1, 14–
15 or 36 of Table ??).

3.1.4.4 Effect Correspondence As argued by Newton
(2017), usually we exercise an action to achieve a desired
effect. Here we argue that one needs to distinguish between

the actual frame of reference, or correspondence, of the
effect. On the one hand, an effect may relate to changes in
the environment, that is, displacing some object or opening a
drawer. However, desired effects may also relate to changes
in one’s own bodily configuration, consequently treating the
change in the environment as a consequence of the bodily
change (c.f. O’Shaughnessy 1997; Section 2). Thence, the
latter does not exclude changes in the environment but rather
treats them as an indirect effect of executing an action
triggered by the bodily effect. This criteria allows for three
choices, viz. environment and body or the combination of
both (see rows 4 or 9, and 1–2 or 5–7, and 3 or 8, respectively,
of Table ??).

3.2 Computational model criteria
Computational model criteria serve to assess implementa-
tional aspects of an action representation by how charac-
teristics of the action model are realized. Thence, the com-
putational model discusses the mathematical and theoretical
underpinnings of action representations.

3.2.1 Formulation Here we consider whether a computa-
tional model is mathematically or bioglogically motivated.
Clearly, there is a strong overlap between both categories,
as, e.g., nature has inspired countless learning algorithms.
Thus the question of where we draw the exact line between
mathematical and biological motivation is valid. Our answer
to this question is that a mathematically-formulated model
solely draws on mathematical tools without the claim of
being biologically plausible, whereas a biologically-inspired,
or biomimetic, model aims at grounding its workings in
biological and neural processes:

• mathematical implies that a computational model is
purely relying on existing mathematical tools with no
claim to be biologically inspired (see rows 1–11 or 13-
20 of Table ??).

• biomimetic implies that a computational model uses
biology and cognition as a precursor for selecting
proper mathematical tools. Such models thus are
inspired from biology and neuroscience (see rows 12,
21 or 33 of Table ??).

3.2.2 Implementation The implementational dimension
of an underlying computational model of an action represen-
tation studies relevant aspects of the programmatic imple-
mentation. This subsumes (i) the concrete mathematical
tools that are employed for learning and prediction, (ii) the
environmental features that are used by the model, and (iii)
the kind of training that is applied to the model, and thus
entails a purely technical dimension.

3.2.2.1 Training The last dimension of the implemen-
tational aspects of the computational model of action rep-
resentations studies the training used to train the predictive
aspects of the developmental dimension of the action model
(see 3.1.3). Our taxonomy supports the four most common
types of training prevalent in robotics research:

• unsupervised learning relates to procedures where
no – direct or indirect – feedback signal is used to
drive the learning process. Eventually this requires
an agent to detect relevant statistical patterns in
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as well as the underlying structure of data without
guidance. With respect to developmental robotics, this
conceptually relates to the autonomous discovery of
patterns or concepts from perceptual inputs in all
available channels (exteroceptive and proprioceptive;
see Section 3.1.1.4; see rows 3, 8 or 10 of Table ??).

• supervised learning refers to learning given concrete
feedback signals. That is, each input datum comes with
a label informing the agent whether its prediction (or
classification) was correct or not. Ultimately the agent
learns to predict novel target values for previously-
unseen inputs. Common drawbacks of this kind of
training are under- or overfitting resulting from too
little or biased training data (see rows 1–2 or 4–7 of
Table ??).

• self-supervised learning refers to agents capable of
applying different views on data for learning patterns
and concepts. Subsequently, one view, e.g., a specific
sensor modality, is used to drive learning in another
data view. For example, an agent may use clustering
for learning low-level concepts in data (e.g., different
obstacles). Subsequently, the cluster outputs are then
used as target values for learning higher-level concepts
using supervised learning (e.g., navigation). The term
self-supervised refers to the supervision emerging
from the learning agent instead of an external source
(see rows 15, 27 or 73 of Table ??).

• semi-supervised learning is a hybrid form of learning
relying on techniques from supervised as well as
unsupervised learning. It most naturally resembles
human learning in that it is initially bootstrapped
from supervised learning by a caregiver, followed
by life-long, unsupervised learning by autonomous
exploration (see rows 70, 87 or 111–112 of Table ??).

3.2.2.2 Features To be able to make meaning of inputs
in terms of computation, an action model requires extraction
of features present in the inputs. Clearly, it may also directly
rely on the inputs without any further processing. This
criterion thus subsumes all kinds of representations from
pixel intensities over salient points to features yielding from
outputs of deep neural nets. Similar to the previous criterion
this is also an open choice criterion, as again, the multitude
of available and possible feature representations is too vast
to be captured formally.

3.2.2.3 Method The method relates solely to the
employed mathematical mechanisms that underpin the
various perceptual, structural, developmental and effect-
related aspects of the corresponding action model. It is an
open choice criterion as providing choices for the multitude
of mathematical tools that may be employed is too vast to be
captured formally.

3.2.3 Evaluation The last dimension of the computational
model underpinning an action representation discusses the
means by which the action representation under study has
been evaluated. The purpose of this dimension is two-fold:
first, it indicates whether a model is just a theoretical musing
or has practical relevance. Second, it indicates the maturity of
a model. We thus claim that this dimension is of substantial
importance. The choices are:

• benchmark refers to action representations that
compete with others in terms of being evaluated
on an unbiased, explicitly-devised data set. Doing
so immediately allows comparing representations
with each other in terms of their representational
and functional capacity. Benchmarks can fall into
two categories distinguished by how the baseline is
established. In one case, the baseline is computed from
a specially-devised training data set and compared
against a test data set. In the other case, a baseline
is established from the results of reference studies
investigating the same hypothesis to be then compared
against the own model using the same data as the
reference studies (see rows 3–4 or 7–8 of Table ??).

• real robot implies that an action representation has
been evaluated on a real, physical robot. Clearly, this
kind of evaluation is the strongest one as it requires a
model to be robust against real-world noise and to be
able to deal with potentially-incomplete data (see rows
1–2, 5–6 or 9–15 of Table ??).

• simulation categorizes models as having only been
evaluated in a simulated environment. Clearly, such
an evaluation is weaker as the inevitable physics
approximations and imperfect noise models fail to
catch a real-world environment. Thus, for action
representations only evaluated in simulation one
cannot assess much more than that they may be
practically feasible but not whether they truly are or
not (see rows 21–22, 26 or 39 of Table ??).

• virtual reality is a relatively recent type of evaluating,
among others, action representations (Zech et al.
2017). It refers to a type of evaluation where a
human agent provides non-simulated interactions in
an otherwise simulated environment with a simulated
agent (see rows 31 or 95 of Table ??).

Observe that this is a multi-choice criterion, i.e., a
computational model of an action representation may well be
evaluated in multiple settings, e.g., preliminary evaluation in
simulation with subsequent evaluation on a benchmark (see
rows 91 or 110 of Table ??).

4 Selection and classification of papers

Paramount to performing a systematic literature review
together for categorizing papers is a carefully designed
search and selection procedure. This section will thus
introduce our systematic search and selection procedure for
identifying papers relevant for classification. Additionally,
we identify relevant threats of validity to our study. The
resulting classification of action representations in robotics
covered in the selected publications is then used in the next
section to indicate the adequacy of the defined criteria and
for further discussions (see Sections 5 and 6).

4.1 Selection of publications
The selection of relevant, peer-reviewed, primary publica-
tions requires the definition of a search strategy as well as
paper selection criteria together with a selection procedure
applied to the collected papers.
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4.1.1 Search strategy The initial search conducted to
collect candidate papers was done automatically on
December 1st, 2017 by consulting the following digital
libraries:

• IEEE Digital Library (http://ieeexplore.
ieee.org/),

• ScienceDirect (http://www.sciencedirect.
com/),

• SpringerLink (http://link.springer.com/),
• SAGE (http://journals.sagepub.com), and
• Frontiers in Neurorobotics (https://
www.frontiersin.org/journals/
neurorobotics).

These libraries were chosen as they cover most of the
relevant research on robotics. The search string was kept
simple, i.e.,

action representation AND robot

in order to keep the search general enough and to
avoid missing any publications employing more precise
terminology. Observe that the search was applied to all
of the following search fields: (i) paper title, (ii) abstract,
(iii) body, and (iv) keywords. The search produced a set of
1575 retrieved papers, thus a paper selection process was
subsequently employed to further filter the results.

4.1.2 Paper selection Figure 2 summarizes the paper
selection process which comprised three phases. In the
first phase, papers were excluded based on their title: if
the title did not indicate any relevance to robotics and
action representations, papers were discarded from the
classification. This reduced the initial set of 1575 papers
to 686 remaining papers. In the second phase, papers were
excluded based on their abstract, reducing the number of
relevant papers to 469. In the third and final phase, papers
were rejected based on their content, reducing the set of
relevant papers to 152. Thus, our classification, as discussed
in Section 6, includes a total of 152 papers. Note that
during the last iteration, a number of relevant papers were
rejected on the basis that they either failed to introduce a
novel representation or to sufficiently reevaluate an existing
representation. Further, we deliberately excluded papers
focusing solely on gesture recognition, as these generally are
not considered mechanically-effective motions compared to
actions (Hobaiter 2017).

4.2 Paper Classification
The 152 selected publications were categorized according
to the classification criteria as defined and discussed in
Section 3 by four researchers. For this purpose, the remaining
set of primary publications was randomly split into four
sets of equal size for data extraction and classification.
A classification spreadsheet was created for this purpose.
Besides bibliographic information (title, authors, year,
publisher) this sheet contains classification fields for each
of the defined criteria. To avoid misclassification, the
scale and characteristics of each classification criterion
were additionally implemented as a selection list for each
criterion. As explained above, the list also contained the

item ‘not specified’, to cater for situations where a specific
criterion is not defined or could not be inferred from
the contents of a paper. Problems encountered during the
classification process were remarked upon in an additional
comment field. The resulting classification of all publications
was then reviewed independently by all four researchers.
Finally, in multiple group sessions, all comments were
discussed and resolved among all four researchers.

4.3 Threats to validity
Naturally there exist various issues that may influence the
results of our study, e.g., the defined search string as
discussed previously. Threats to validity include multiple
factors, most relevant to us (i) publication bias, (ii)
identification and (iii) classification of publications, as well
as the (iv) terminology employed.

4.3.1 Publication bias This threat relates to the circum-
stance that only certain approaches, that is, those producing
promising results or promoted by influential organizations
are published (Kitchenham 2004). We regard this threat
as moderate since the sources of publications were not
restricted to a certain publisher, journal or conference. There-
fore, we claim that our study sufficiently covers existing
work in the field of action representations and robotics.
However, to balance the trade-off between reviewing as
much literature as possible while nevertheless accumulating
reliable and relevant information, gray literature (technical
reports, work in progress, unpublished or not peer-reviewed
publications) was excluded (Kitchenham 2004). Further, the
required number of pages was set to four to guarantee
that publications contained enough information in order to
categorize them appropriately.

4.3.2 Threats to the identification of publications This
threat is related to the circumstance that, during the search
and selection of publications, relevant papers may have been
missed. To address this, we employed a very general search
string to avoid missing potentially relevant publications
during the automated search. Yet, to additionally reduce
the threat of missing important publications, we informally
checked papers referenced by the selected papers. We did
not become aware of any frequently cited papers that were
missed.

Apart from that, we also want to point out that we
deliberately excluded any papers discussing just plain
reactive open- or closed-loop controllers, e.g., Dynamic
movement Primitives (DMP) or Central Pattern Generators
(CPG), as these, to the best of our knowledge, do not readily
address the topic of action at a cognitive level but rather at
the control level. Clearly, reactive control does not relate
to the cognitive concept of an action being represented
in terms of its effects and usually not readily coupled
to some specific motor program. Additionally, we also
excluded a large number of papers studying the application
of reinforcement learning (RL). In general, RL assumes
actions are already given (observe that we are interested
in action representations and means of populating them by
learning), and further, reinforcement learning also does not
employ any notion of effect whatsoever.
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Figure 2. Selection of publications studied in this survey.

4.3.3 Threats to the classification of publications Given
the rather large number of publications selected for
classification according to a substantial number of defined
criteria, the threat of misclassification needed to be
addressed. Various measures were implemented in order to
mitigate this threat. First of all, all criteria were precisely
defined, as presented and discussed in Section 3, prior to
the commencement of the paper selection and classification
process. There was scope for the refinement of the concepts
by the researchers during the process, but this was restricted
mainly to descriptive adjustments. Secondly, for each of
the criteria we added a list of possible selections in the
classification sheet to avoid misclassification. Third, the
classification was conducted in parallel by four researchers
who are experts in the field and who repeatedly cross-
checked the classification independently. Finally, weekly
meetings were held by the four researchers to discuss
and resolve any comments that arose during independent
classification.

4.3.4 Terminology We are aware that the way we use
specific terminology, e.g., action and motion, or, learning
and inference, or understanding may not be perfectly in
line with their use in other areas of research. However, this
survey has been written with a robotics research background,
which is why we stick to the terminology as used in this
field. Thus, given both this circumstance and the fact that
the notion of an action representation, at least for now,
is not that wide-spread in robotics we took the liberty to
rigorously decide on our own when to use which term and
whether some representation is an action representation or
not. However, readers from different fields should not face
any problems in properly interpreting the content of this
work, as the terminology as used in robotics research—to

a high degree—has been coined by relevant concepts from
psychology and neuroscience. On the other side, we hope
that our work stimulates a discussion about the state of the
art of action representations in robotics to advance this field
and contributes to the establishment of a common and well-
defined terminology.

5 Results and Discussion
This section comprises the main contribution of this article
by presenting and discussing the classification of the selected
papers (see Section 4). The complete classification of all
152 papers by the introduced taxonomy (see Section 3) is
shown in the appendix of this article (see Tables ?? and ?? in
Appendix C) and is also available online†.

For each of the selected publications it was possible
to categorize the presented action representation according
to the criteria defined in Section 3. This indicates
the pertinence of these criteria for the classification of
action representations in robotics, thence supplying a
framework for understanding, categorizing, assessing, and
comparing action representations in robotics. Additionally,
besides validating the criteria introduced in Section 3,
our classification, having been conducted in a systematic
and comprehensive manner, provides an aggregated view
and investigation of current state of the art of action
representations in robotics.

Figure 4 shows the summary statistics by a co-occurrence
matrix of category values as defined in Section 3 that
arise in the analyzed papers, thus providing the foundation

†https://iis.uibk.ac.at/public/survey/
ActionRepresentation/
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for subsequent discussions. Figure 3 gives the category
distributions of the selected papers.

5.1 Learning of Action Representations
Learning, that is, the process of acquiring new or
modifying existing knowledge, behaviors, skills, values, or
preferences (Gross 2015), is one of the central aspects of
action representations. Clearly, this usually requires proper
motivation for learning to take place. Looking at Figure 3
shows that in great measure, the question of how to
motivate (extrinsically or intrinsically) a learner is hardly
addressed (30 out of 152) and where it is, learning is
chiefly extrinsically motivated (26 out of 30). Correlating
this with the kind of training (see Figure 4), we conjecture
that this in general is because of the prevalence of supervised
and offline learning (79 and 110 out of 152, respectively)
which traditionally imposes the motivation of reducing some
externally prescribed loss. In accordance to that, exploratory
learning has also seen very little attention (16 of out 152).
Clearly, such kind of learning would require switching to
semi- or self-supervised online learning (1 and 4 of out 16
that do online learning). Furthermore, doing so would require
a valid model of a robot’s embodiment in order to learn what
is possible given the available motor skills. In line with this,
we also argue that manually-provided ground truth should be
avoided as a means of a feedback signal for learning due to
its static nature (69 out of 152). Using such manually-defined
ground truth drastically impedes autonomous learning on
a real robotic platform due to the dependence on teacher-
dependent supervision (54 out of 69). Again, if learning is
done on a real robotic platform we suggest the use of semi-
or self-supervised online learning for immediate relation to
the robot’s embodiment.

The majority of the considered methods uses the observer
perspective (86 out of 152). Clearly, learning from such a
perspective hinders the emergence of action representations
for purposes other than plain recognition due to the yet-
unsolved correspondence problem (c.f. Zech et al. (2017))
and the consequent difficulty of relating observed actions
to one’s own embodiment. Admittedly, one can learn
from observation but only in combination with subsequent
exploration. Yet, we did not identify any such paper. On the
bright side, however, there is still a substantial number of
approaches that learn from the agent’s perspective (55 out
of 152), though only 14 of those acquire new knowledge
by exploration and 20 by demonstration. This readily
corresponds to the prevalent use of only exteroceptive stimuli
(113 out of 152). Observe that this again drastically foils
relation to an agent’s own embodiment.

Noteworthy further drawbacks we currently see in
learning action representations are (i) a lack of employing
selective attention (27 of out 152), (ii) scarcity of language
use (3 out of 152), (iii) negligence of learning with
reference to an agent’s limbs (10 out of 152), and (iv) only
considering discrete instead of continuous (or both discrete
and continuous) effects (78 out of 152). Obviously, selective
attention allows the curse of dimensionality to be tackled by
focusing on what is relevant. Further, learning with respect
to the limbs eases re-execution of trained actions due to
the simplified planning problem, i.e., there is no need to
do whole-body planning. Thirdly, using language enhances

structuring and understanding of action knowledge thanks to
the tight relation between language and action (Guerra-Filho
and Aloimonos 2007). Finally, enabling agents to reason
about not only discrete but also continuous effects unlocks
the ability to plan with respect to local changes in both the
environment and the embodiment, and not only at a global
environmental scale.

To conclude, in the area of learning action representations,
the current multiple drawbacks stem in general from the
prevalent combination of supervised, offline learning from an
observer’s perspective. We suggest that in the future, online
learning in a semi- or self-supervised way from the agent’s
perspective merits more emphasis to resolve issues like the
correspondence problem or proper motivation for learning.

5.2 Maturity of Action Representations
Two of the central criteria of our taxonomy directly relating
to the maturity of an action representation are the means
of exploitation and evaluation. Clearly, representations that
allow only for recognition and that further are only evaluated
on a benchmark lack maturity, missing empiricism yielding
from real-world experiments on an actual robotic platform.
In this respect, Figure 3 draws a rather disappointing picture
in that more than half of the categorized papers have only
been evaluated in terms of benchmarks (80 out of 152).
Correlating this to the type of exploitation (see Figure 4)
we see that the bulk of these papers (72 out of 80) only
do recognition. The main drawback coming along with such
methods is the use of only exteroceptive stimuli and features
which undermine construction of internal representations of
one’s own embodiment due to the missing relation between
observation and embodiment. Yet, as neuroscience claims,
such representations of one’s embodiment are paramount
for action recognition. Only with such models of the self
at our disposal we are able to map observed actions onto
our own embodiment for reexecution (Sokolov et al. 2010).
This mapping is crucial as it immediately solves the the
correspondence problem. On the other side, the nastiness
of the correspondence problem in combination with lacking
representations of the self (and thereof emerging relations to
an agent’s embodiment) immediately explains why the works
that address action recognition fail to close the gap towards
re-execution of observed actions.

Another problem that emerges if looking closer at the
plethora of papers doing action recognition is their stopping
short of action sequencing (0 out of 72 address action
sequencing). However, looking at Figure 3 immediately
reveals that papers not focusing on recognition but rather
on single- and multi-step prediction as well as planning
are capable of sequencing actions (27 and 16 out of
63). Unfortunately however, these methods only allow
sequencing single actions together but fail to represent
resulting action sequences as compound actions. In contrast,
those action representations that are able to handle
compound actions (4 out of 152) do not address sequencing
of such compound actions.

The ability to handle action competition in the representa-
tion is another key aspect regarding the maturity of a model.
Clearly, in every situation an agent is faced with multiple
actions that yield similar or identical effects; thus it has to
choose which action, among the feasible ones, to ultimately
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Development Perception Effect Formulation
Motivation Exploitation Perspective Abstraction Discretization mathematical 131

extrinsic 26 planning 20 limb 10 atomic 136 categorical 78 biomimetic 21
intrinsic 4 single/multi-step prediction 46 agent 55 compound 10 continous 48

not specified 122 effect prediction 6 observer 86 both 6 both 9 Training
Acquisition language 1 not specified 1 Competition not specified 17 unsupervised 41

demonstration 55 recognition 78 Stimuli yes 61 Grounding self-supervised 6
exploration 16 not specified 1 exteroceptive 113 no 91 yes 46 semi-supervised 8
ground truth 64 Learning proprioceptive 11 Sequencing no 91 supervised 94

hard coded 9 online 25 both 27 yes 63 not specified 15 not specified 3

combination 5 offline 125 not specified 1 no 88 Associativity Evaluation
not specified 3 not specified 2 Selective attention not specified 1 unidirectional 98 VR or Combination 4

Prediction yes 27 Generalization bidirectional 17 Simulation 21
optimization 21 no 125 yes 146 Correspondance Real robot 46
inference 18 Granularity no 5 environment 42 Benchmark 80
classification 78 global 88 not specified 1 body 65 not specified 1
regression 33 meso 55 both 25
not specified 2 local 7 not specified 20

not specified 2

Figure 3. Numbers of papers falling into each category for all criteria.

execute. In total, however, the number of approaches able
to handle competition is less than half of all the papers we
categorized (61 out of 152). Yet, using proper mathemat-
ical mechanics one actually can get competition for free,
e.g., by employing neural networks or any other type of
regressor/classifier that intrinsically handles competition at
the decision level. However, we see a further potential reason
for this general lack of handling competition, motivated by
the circumstance that most works are only able to handle a
couple of actions, possibly rendering competition useless for
now. Yet, future work should put more emphasis on action
competition, rendering agents more autonomous.

A last but very important indicator for the maturity
of an action representation is the way it represents and
handles effects. In general, the works we categorized focus
on categorical effects (75 out of 152 papers) with only
unidirectional associativity (95 out of 152). Correlating this
to the category of exploitation, we again see that the majority
of the representations that are only able to handle categorical
effects are exploited for action recognition (54 out of 75).
Clearly this is due to only recognizing classes of actions
but not the continuous changes that the effects yield in
both the agent’s embodiment and its environment. However,
this substantial lack of handling continuous effects has a
further reason: a shortcoming in grounding effects in the
real world (46 out of 152). Real-world physics in general
are not discrete but continuous dynamical systems. Only
by verifying estimations by real-world observations can
we expect an agent to truly learn about the effects that it
causes as well as its potential control over its environment.
Finally, a last major drawback from our perspective is
the prevalent unidirectional effect association (98 out of
152). This immediately yields scarcity of inverse models for
inferring what to do to achieve a desired effect, consequently
reducing the autonomy of the agent.

To sum up, we submit that the majority of existing action
representations are not in a very mature state. This follows
from three major observations. First, evaluation mostly is
not done on real robotic platforms. Secondly, researchers
for now mainly focused on constructing representations only
for recognition that neglect the self. And third, for most

of the categorized works effects are not grounded in real-
world physical environments. By putting more emphasis
on these issues we claim that existing drawbacks, e.g., the
shortcoming of proper inverse models, could readily be
addressed.

5.3 Formalizing Action Representations
One of the central yet quite disappointing insights of our
systematic search and classification is the realization that in
robotics, usually, there is no widespread use of specifically
devised data types (think about an abstract data type) for
storing and managing action-specific knowledge. Clearly,
such data types are however necessary as our earlier treatise
in Section 2 shows where in general one can see strong
arguments in favor of internal representations of both actions
and the self (c.f. Mandik (2005); Jeannerod (2006); Tunik
et al. (2005); Naito et al. (2016)). Yet, except for the work of
Beetz et al. (Tenorth and Beetz 2012; Bartels et al. 2013), as
well as Wörgötter et al. (Worgotter et al. 2013; Aksoy et al.
2013; Vuga et al. 2015; Aksoy et al. 2016b) there has been
little effort towards the design of appropriate data structures
for storing, accessing, and transferring action knowledge.
Quite the contrary, what is done in most categorized
papers is to leverage existing vision-based feature extractors
(e.g., CNNs) and descriptors, and to subsequently use a
combination of those as input to some regressor/classifier.
Obviously these vision-based features and descriptors in
general do not express anything related to a specific action
except for maybe what it “looks like”, but doubtlessly no
information regarding how to actually perform the action (c.f.
our earlier writing on closing the gap between recognition
and re-execution in Section 5.2). Apart from that, in respect
of Searle’s famous definition of a computer being a device
that manipulates formal symbols (Searle et al. 1997), we
conjecture that for artificial agents, valid representations of
both actions and the self are inevitable. Formal symbols are
representations. So, at the end of the day, an artificial agent
needs internal representations to be able to compute.

Since Francis’ influential article on the internal principle
of control theory (Francis and Wonham 1976) it is generally
accepted that one of the central pillars of mammalian motor
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Figure 4. Co-ocurrence matrix of all criteria for all categorized papers (best viewed on a computer display; numbers missing for
each criteria to sum to 152: not specified).
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cognition strongly builds on inverse models for motor control
(Wolpert and Kawato 1998). In the course of our survey
we identified exactly one paper out of 152 (see Table ??
and ?? in the Appendix) that makes use of explicit inverse
models for single-/multi step prediction. Obviously this
astonishing ignorance of inverse models only fortifies what
we already argued earlier regarding the maturity of action
representations. Yet, this lack of inverse models readily can
be tackled by carefully revising existing representations and
their mathematical underpinnings. We claim that doing so
is paramount to verily advance the current state of the art
in action representations in robotics. From a present-day
perspective, in the long run this would also aid in effect
modelling for action representations, as one readily obtains
bidirectional effect associativity which currently is only
addressed by a fraction of all categorized papers (17 out of
152). We guess that the concurrent absence of inverse models
as just discussed is further fostered by also not attributing
neuroscientific results enough consideration in terms of
building biomimetic models for action representations (21
out of of 152).

Another blind spot we revealed in the context of
formalizing action representations is that, to a great extent,
model formalizations are only done at the subsymbolic
level. That is, looking at Tables ?? and ?? one sees a
strong predominance of methods that purely operate at a
subsymbolic level by means of the used features. Clearly,
higher-level cognition requires symbolization of acquired
knowledge for high-level abstract task planning. The results
of our classification as shown in Figure 3 reinforce our
observation in that only a small fraction of categorized action
representations are exploited for high-level task planning (20
out of 152). We argue that action representations require
proper symbolization for unlocking high-level abstract task
planning.

Finally, a last point to discuss in the context of action
representation formalizations is the scant use of optimization
(21 out of 152). We argue that optimization should be a first-
class choice as ultimately one wants to optimize behavior
by choosing the most fitting action. Correlating these papers
to the kind of exploitation we at least see that 8 out of
those do single-/multi-step prediction, and 9 do planning,
respectively, indicating that if optimization is used, then it
is for optimizing behavior. Nevertheless, we argue that more
emphasis should be put on optimization for action selection
and behavior shaping. Observe that this however does not
call for an increased use of RL at this point. RL in general
is not about optimizing an action but rather the sequence
of actions that is taken to fulfill a task. Optimization of the
action itself should take place before policy optimization.

5.4 Usability of Action Representations
One of the paramount questions when talking about formal
models in a general sense is their usability. The Oxford
English dictionary defines usability as the degree to which
something is able or fit to be used. Now, this definition is
very broad and does not really investigate what it means to
be usable or how to actually measure whether something is
usable. Let us therefore expand this definition by introducing
three characteristics that we consider relevant for quantifying
the usability of an action representation:

• effectiveness, i.e., the completeness and accuracy of a
representation

• efficiency, i.e., how long does a representation need to
be learned and also how easily can it be leveraged for
executing a desired action

• robustness, i.e., how well does the representation
generalize, but also deal with incomplete/corrupt data

Regarding effectiveness we clearly see a large shortcom-
ing in currently-available action representations. Looking at
Figure 3 (and as already mentioned) the bulk of existing
methods solely do action recognition (78 out of 152). Despite
being aware that recognition capabilities are crucial for
action representations, we however claim that this is only
the first step towards more powerful representations that
also allow for motor imagery and actual execution of the
abstracted action. Especially single- and multistep prediction
is of high importance (46 out of 152) due to its imme-
diate relation to deciding what to do next. Unfortunately
however, this again boils down to closing the gap between
recognition and execution (as already mentioned) as well
as the correspondence problem for properly learning from
demonstration. Further, this also comprises consideration of
continuous effects for being able to come up with precise
and accurate predictions regarding dynamic changes in the
environment.

Regarding efficiency we submit that current models are
learnable with reasonable expense, at least in the event of
supervised, offline learning (85 out of 152). However, one
has to keep in mind the general shortcoming of such models
in that they generally only allow for action recognition (53
out of 85). Clearly, one has to keep in mind that in the case
of exploratory, self- or semi-supervised learning, learning a
representation will take substantially longer. Unfortunately,
as our survey shows, exploratory learning has not been
sufficiently addressed for learning action representations (16
out of 152). Observe that this lack of exploratory learning
immediately relates to the maturity of a model by means
of whether a representation is evaluated on a real robot or
not. Clearly, learning and evaluating action representations
on real robotic platforms strengthens the maturity of a
representation.

One of the hallmark features of the human mind is its
robustness to noisy or corrupt sensory inputs. This capacity
stems for one central feat of human development: lifelong
learning in a noisy and dynamic environment. Hence, only
by grounding observations in real-world experiences, our
minds are able to develop robust motor control (Harnad
1990). It is thence evident that for action representations
in robotics we conjecture that such robustness yielding
from grounding experiences in real-world observations is
paramount. Besides, the capacity to generalize to new
situations also plays a major role when it comes to
robustness. Obviously, not being able to generalize to novel
situations likely indicates a very weak model. Looking
at Figure 3 we see that nearly all categorized methods
generalize to novel situations (146 out of 152) indicating
high robustness of most approaches. Yet, looking at how
many of those ground effects shows quite a different picture.
Not even a third of those (46 out of 146) actually ground
effects by real-world experiences, hence now undermining
the robustness of the remaining approaches. Correlating
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these numbers with the means of exploitation however
immediately reveals that 73 of the models not grounding
effects are exploited only for recognition (observe that
the remaining three recognition models do ground effects).
Undoubtedly, recognition is feasible without grounding
effects. For the remaining 27 models we unfortunately
either lack the relevant data, or, in the other case, these
models mostly do single-/multistep prediction using models
trained by video sequences. The above epitomizes again the
prevalence of recognition models which just do not require
effect grounding. In the remaining cases, we conjecture that
this due to a neglect of selective attention (only 27 out of
152 do so). Naturally, selective attention allows the curse of
dimensionality to be tackled by focusing only on the stimuli
that are relevant, thereby catalyzing the grounding of effects.
Figure 4 however reveals that only 11 out of those 27 models
ground effects. We claim that future action representations
need to capitalize on selective attention for facilitating effect
grounding thus drastically improving robustness.

Compiling the above, usability is essential for action
representations. Current issues as discussed however could
be tackled by implementing and especially evaluating
a representation directly on a real robotic platform.
Such an approach immediately unlocks the grounding
of effects and consequently strengthen the maturity of
the evaluated representation. By additionally considering
selective attention one readily ends up with a representation
substantially more robust than most current approaches.

5.5 A Few Last Words on Action and Activity
Recognition Datasets

Inspired by a recent survey of Chaquet et al. (2013) we
also investigated the use and wide-spread uptake of datasets
as reported by the categorized papers. Table 1 shows
the resulting distribution of datasets as reported by our
classification. In total, 41 different datasets have been used
by various papers if evaluating an action representation using
a benchmark (80 out of 152, see Figure 3). Investigating the
actual usage count of the various datasets, Table 1 shows
a similar preference pattern as Table 5 of Chaquet et al.’s
(2013) survey. For example, KTH, Weizmann and IXMAS
are all among the top five datasets used. If learning of
action representations is possible from datasets for action
recognition, evaluating the relevance of the representation for
robotics should be similarily straightforward (c.f. computer
vision (Wu et al. 2015; Russakovsky et al. 2015)). It is
thus critical to define suitable, standardized datasets to learn
action knowledge and corresponding benchmarking setups
to properly evaluate the representation. This would greatly
enhance quantitative comparison of different approaches,
simply because the baseline is the same.

A more severe usage pattern is shown by Table 2 in that
only a small fraction of papers evaluated on benchmark
datasets used more than two datasets. Evaluating a model
only on one or two datasets may drastically falsify results
regarding generalization capabilities, simply because of
focusing only on a small set of actions captured in just
a couple of environments. Considering multiple datasets
for evaluation—in line with the above—further allows for
more insight into the behavior and capabilities of a model,

and therefore for more robust models by virtue of better
understanding.

We submit that applying more diversity in evaluating
models on benchmarks, that is, using multiple and especially
commonly used datasets, would greatly advance research
on action representations in robotics. This advancement
eventually capitalizes on deeper insight and understanding
of how these various models actually achieve their desired
outcome by meaningful quantitative comparisons.

Dataset # Usage
KTH (Schüldt et al. 2004) 15
Weizmann (Blank et al. 2005) 13
IXMAS (Weinland et al. 2006) 8
MSR-Action-3D (Li et al. 2010) 7
HMDB (Kuehne et al. 2011) 4
3D Action Pairs (Oreifej and Liu 2013) 2
50 Salads (Stein and McKenna 2013) 2
ADLs (Pirsiavash and Ramanan 2012) 2
CAD-60 (Sung et al. 2012) 2
CMU-MoCap (CMU 2003) 2
Florence3D Actions (Seidenari et al. 2013) 2
HDM05 (Müller et al. 2007) 2
Hollywood2 (Marszalek et al. 2009) 2
MoPrim (Reng et al. 2005) 2
MSR-II (Cao et al. 2010) 2
MSR Daily Activiy (Wang et al. 2012) 2
UTKinect-Action (Xia et al. 2012) 2
YouTube (Liu et al. 2009) 2
UCF-101 (Soomro et al. 2012) 2
UCF-Sports (Rodriguez et al. 2008) 2
Berkeley-MHAD (Ofli et al. 2013) 1
ChaLearn Gesture (Guyon et al. 2012) 1
CHEMLAB corpus (Vitkute-Adzgauskiene et al. 2014) 1
FBG (Hwang et al. 2007) 1
Fish-action (Rahman et al. 2012) 1
G3D (Bloom et al. 2012) 1
Human Grasp (Schenatti et al. 2003) 1
JIGSAWS (Gao et al. 2014) 1
ManiAc (Aksoy et al. 2015) 1
MSRC-12 (Fothergill et al. 2012) 1
MuHAVi (Singh et al. 2010) 1
Olympic-Sports (Niebles et al. 2010) 1
Ravel (Alameda-Pineda et al. 2011) 1
RGBD-HUDAACT (Ni et al. 2013) 1
Reading Act (Chen et al. 2014) 1
Robust (Gorelick et al. 2007) 1
Stanford-40 Actions (Yao et al. 2011) 1
SYSU-3D-HOI (Science and Lab 2017) 1
TACoS (Regneri et al. 2013) 1
UMD (Veeraraghavan et al. 2006) 1
UT-Interaction (Ryoo and Aggarwal 2010) 1
YouTube (Liu et al. 2009) 1

Table 1. Datasets used for benchmarking in various
categorized papers with respective usage count.

# Datasets # Papers
4 5
3 7
2 13
1 31

Table 2. Total number of datasets used by various categorized
papers.
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6 Open research challenges
Our classification and the resulting discussion from the
previous section show that action representations in robotics
have been intensively studied in recent years. However, our
discussions from Sections 5.1–5.5 also reveal that the current
state of the art regarding action representations in robotics
is still in an early stage and currently suffers from multiple
issues. Below we provide an overview of the central research
challenges as revealed by the results of our analysis. We
believe that addressing these is paramount to successfully
advance research on action representations in robotics.

• Intensifying effect-centricity and effect grounding
Grounding of effects in real-world percepts is one of
the key challenges from our point of view. Clearly,
due to the vast amount if information available at
each moment from both the self and the environment
this is a hard challenge. Yet, doing so is critical to
improve the quality of a model. As mentioned below,
selective attention is one of the keys in handling this
vast amount of data. Yet, we further claim that the
capability of processing multi-modal percepts also
substantially catalyzes the grounding of effects.

• Coupled Forward and inverse models One of the
central advantages of biomimetic models, especially
in the field of motor control and thence action
representations, is their postulation of the need for
inverse models. It is thence necessary to carefully
reconsider current results in neuroscience and motor
cognition (c.f. Section 2) to tackle the prevalent lack
of inverse models. Doing so, among other benefits,
readily unlocks the capacity of bidirectional effect
associativity as well as performing motor imagery
(Jeannerod 2006).

• Exploiting language for action understanding The
compositional and semantically-rich nature of lan-
guage is a strong prior for action understanding.
Language provides precise and unambiguous seman-
tics when it comes to describing actions. Therefore,
we claim that besides grounding of effects in real-
world observations, rooting the meaning of an action
in natural language further boosts both learning and
properly understanding an action. In the long run, this
allows learning of more abstract, i.e., disembodied,
and thence useful action representations.

• Intrinsically-motivated, exploratory, semi- and self-
supervised learning Importantly, humans learn by
observation and subsequent exploration and interac-
tion with their environment. Following this central
motive, it is crucial to allow computational agents
to learn relevant concepts with minimal prior infor-
mation. This allows for progressive learning of rep-
resentations of the external world as well as of the
self. Clearly, this requires an agent to be accordingly
motivated as well as the capacity of self-supervising
its learning efforts. This ultimately culminates in using
already-learned concepts, to both drive and supervise
the learning autonomously. We claim that learning in
such a way yields stronger autonomy compared to
classic supervised learning and thence merits more
attention.

• Selective attention Again, we argue similarly to
Zech et al. (2017) that selective attention is an
important aspect for focused perception by blocking
out clutter and noise. Contrary to our reasoning
in the case of affordance however, here we claim
that selective attention should be ascribed a central
role as a precursor for grounding effects by
successfully tackling the curse of dimensionality by
only considering those stimuli which are relevant
for grounding the observed effects, thus drastically
boosting the robustness of different representations.
Observe the immediate complementarity to the above
challenge regarding effect centricity and grounding of
effects.

• Solving the correspondence problem Similarly to Zech
et al. (2017) we claim here that it is of utmost
importance to solve the correspondence problem in
robotics, i.e., mapping of observed motions. This
would address current drawbacks in both learning
from demonstration and in understanding actions from
an observer’s point of view. Especially in the event
of action representations this would allow closing the
gap from recognition to re-execution. Observe that this
also requires intensified research towards constructing
internal models of the agent’s self.

• Sequence-based modeling The capability of compos-
ing compound actions, e.g., pick-and-place, out of
more granular, atomic actions is a central capac-
ity of mammalian motor control. Our minds do not
store complete motor programs for each and every
action but rather dynamically synthesize them out
of more general building blocks for seamless action
execution (c.f. Section 2). Clearly, such a capacity is
also paramount for action representations in robotics
especially with regards to generalizability but also
scalability at a computational level.

Observe that there exists a substantial intersection of the
above challenges with those identified by Zech et al. (2017)
in the case of affordance research in robotics. This however is
not surprising given the strong relation between actions and
affordances, the latter being a key driver in action selection.
This intersection clearly resembles the strong interrelation
of these two complementary fields of research and thus
motivates joint research efforts.

7 Conclusion
Action representations are a key ingredient of autonomy in
robots. In this article we thus made three major contributions
relevant for this field of research. After a thorough survey of
the meaning of action as well as contemporary definitions
and opinions from various associated scientific disciplines
we ended with a seminal definition of action relevant
to robotics (c.f. Section 2). This treatise thence paved
the way for the first major contribution of our article,
a taxonomy of action representations in robotics (c.f.
Section 3). This allowed us to conduct our second major
contribution, a systematic review of existing work on
action representations in robotics. Identified publications
subsequently were categorized using our taxonomy, yielding
the results for our third contribution in the form of

Prepared using sagej.cls



Zech et al. 21

an in-depth discussion of existing research on action
representations in robotics (c.f. Section 5). This discussion
finally culminated in the identification of key research
challenges we deem fundamental for advancing research on
action representations in robotics (c.f. Section 6).

Summarizing our work we report that for now one of
the central drawbacks in action research in robotics is the
crucial lack of a common notion of both action and action
representation in robotics. However, this shall not raise the
impression that current state of the art work is useless. On
the contrary, existing results act both as a foundation and
guidance towards how to advance action research in robotics.
Accordingly, in Section 6 we identified future courses of
actions for action research in robotics. We believe that
intensifying research in these fields prolifically unlocks novel
motor-cognitive capabilities in autonomous agents towards
both more autonomy and dexterity.

A Abbreviations for Classification
Tables 3 and 4 show the various abbreviations as used in the
classification depicted in Tables ?? and ??.

Abbreviation Definition
b both
n No
ns not specified
y Yes
Per Perspective
li limb
ag agent
ob observer
St Stimuli
e exteroceptive
p proprioceptive
SA Selective Attention
Grn Granularity
lo Local
me Meso
gl Global
Abs Abstraction
a atomic
c compound
Com Competition
Seq Sequencing
Mot Motivation
in intrinsic
ex extrinsic
Acq Acquisition
com combination
d demonstration
exp exploration
gt ground truth
hc hard coded
l language
Pred Prediction
cla classification

inf inference
opt optimization
reg regression
Exp Exploitation
ep effect prediction
l language
p planning
r recognition
sa self-assessment
sp single-/multi-step prediction
Lrn Learning
off offline
on online
Disc Discretization
ca categorical
co continuous
Gnd Grounding
Asso Associativity
ud unidirectional
bd bidirectional
Corr Effect Correspondence
by body
env environment

Table 3. Abbreviations for action model.

Abbreviation Definition
Form Formulation
MAT mathematical
BIO biomimetic
Train Training
S supervised
SELF self-supervised
SEMI semi-supervised
U unsupervised
Eval Evaluation
BM benchmark
RR real robot
SIM simulation
VR virtual reality
C combination

Table 4. Abbreviations for computational model.

B Abbreviations for Methods and Features
Table 5 lists the definitions of abbreviations denoting the
various features and methods as reported by the papers
categorized in Tables ?? and ??.

Abbreviation Definition

*MB Model-Based
*MF Model-Free
AE Autoencoder
ANN Artificial Neural Network
ASOM Associative Som
BN Bayesian Network
BOF Bag-Of-Features
BOO Bag-Of-Objects
BOW Bag-Of-Words
BP Belief Propagation
CMAC Cerebellar Model Articulation Controller
CNN Convolutional Neural Network
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CRF Conditional Random Field
CS Conceptual Spaces
CTRNN Continuous Time RNN
DAG-RNN Directed Acyclic Graph RNN
DBN Dynamic Bayesian Networks
DCNN Deep CNN
DMP Dynamic Movement Primitive
DNN Deep Neural Network
DP Dynamic Programming
DS Dynamical System
DTW Dynamic Time Warping
ECV Early Cognitive Vision
EDM Euclidean Distance Matrix
EKF Extended Kalman Filter
ELM Extreme Learning Machine
EM Expectation-Maximization
EMG Electromyography
FFT Fast-Fourier Transform
FREAK Fast Retina Keypoint
FSM Finite-state Machine
FSTM Feasible Situation Transition Manifold
GLOH Gradient Location and Orientation Histogram
GMM Gaussian Mixture Model
GMR Gaussian Mixture Regression
GP Gaussian Process
GPR Gaussian Process Regression
GWR Growing When Required Network
HHMM Hierarchical Hidden Markov Model
HMM Hidden Markov Model
HOG History Of Gradients
HOS Histogram Of Silhouette
HPNNA Hierarchical Programmable NN Architecture
ICA Independent Component Analysis
IMU Internal Measurement Unit
KDE Kernel Density Estimation
KD-Tree k-Dimensional Tree
k-NN k-Nearest Neighbor
LCSS Longest Common Subsequence
LD Levenshtein Distance
LSM Liquid State Machine
LSTM Long-Short Term Memory
LVQ Learning Vector Quantization
MCSVM Multiclass SVM
MDN Mixture Density Network
MDP Markov Decision Process
MKL Multiple Kernel Learning
MMI Maximization of Mutual Information
MMM Master Motor Map
MMR Maximum Margin Regression
MNN Modular Neural Networks
MoFREAK Motion-Based FREAK
MSER Maximally Stable Extremal Regions
MTRNN Multiple Timescales RNN
NBNN Naive Bayes Nearest Neighbor
NF Neural Field
NGLD Normalized Google-Like Distance
NLP Natural Language Processing
NMF Negative Matrix Factorization
NNC Nearest Neighbour Classifier

NNMF Non-NMF
NN Neural Network
PCA Principal Component Analysis
PCA-STOP PCA Space-Time Occupancy Patterns
PDI Positional Distribution Information
PHMM Parametric HMM
PLSA Probabilistic Latent Semantic Analysis
PMP Passive Motion Paradigm
PMT Projected Motion Template
PP Purr-Puss
PSVM Probabilistic SVM
PVS Predicate Vector Sequence
QTC Qualitative Trajectory Calculus
RBF Radial Basis Function
RF Random Forest
RGB-D Red-Green-Blue-Depth
RGB Red-Green-Blue
RL Reinforcement Learning
RNNPB RNN with Parametric Bias
RNN Recurrent Neural Network
SCFG Stochastic Context Free Grammar
SEC Semantic Event Chain
SFA Slow Feature Analysis
SIFT Scale-Invariant Feature Transform
SOM Self Organizing Map
SPHOF Spatial Pyramid Histogram of Optical Flow
SSM Self-Similarity Matrix
SSP Space Salient Pairwise Feature
STDP Spike-Timing Dependent Plasticity
STIP Spatio-temporal interest points
STV Spatio-Temporal Volumes
SVM Support Vector Machine
SVR Support Vector Regression
TSP Time Salient Pairwise Feature
VAE Variational AE
VMT Volume Motion Template
WSM Word Space Model

Table 5. Abbreviations for methods an features

C Classification of selected publications
Tables ?? and ?? show the full classification of all selected
publications. These results are also available online at
https://iis.uibk.ac.at/public/survey/
ActionRepresentation/.
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Babič J, Hale JG and Oztop E (2011) Human sensorimotor learning
for humanoid robot skill synthesis. Adaptive Behavior 19(4):
250–263. DOI:10.1177/1059712311411112.

Bamert L and Mast FW (2009) Action Representation. Springer
Berlin Heidelberg, pp. 32–34.

Bartels G, Kresse I and Beetz M (2013) Constraint-based movement
representation grounded in geometric features. In: 2013
13th IEEE-RAS International Conference on Humanoid Robots
(Humanoids). IEEE. DOI:10.1109/humanoids.2013.7030027.

Bernstein NA (1996) On Dexterity and its development. Lawrence
Erlbaum Associates.

Bessiere P, Dedieu E and Mazer E (1994) Representing
robot/environment interactions using probabilities: the "beam
in the bin" experiment. In: Proceedings of PerAc ’94. From
Perception to Action. IEEE Comput. Soc. Press. DOI:10.1109/
fpa.1994.636093.

Bhat AA and Mohan V (2015) How iCub learns to imitate use
of a tool quickly by recycling the past knowledge learnt
during drawing. In: Biomimetic and Biohybrid Systems.
Springer International Publishing, pp. 339–347. DOI:10.1007/
978-3-319-22979-9_33.

Blank M, Gorelick L, Shechtman E, Irani M and Basri R
(2005) Actions as space-time shapes. In: The Tenth IEEE
International Conference on Computer Vision (ICCV’05). pp.
1395–1402. URL https://www.wisdom.weizmann.

ac.il/~vision/SpaceTimeActions.html.
Bloom V, Makris D and Argyriou V (2012) G3D: A Gaming

Action Dataset and Real-time Action Recognition Evaluation
Framework. In: 2012 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops. pp. 7–
12.

Botvinick MM (2008) Hierarchical models of behavior and
prefrontal function. Trends in cognitive sciences 12 5: 201–8.

Buonamente M, Dindo H and Johnsson M (2013) Recognizing
actions with the associative self-organizing map. In: 2013 XXIV
International Conference on Information, Communication and
Automation Technologies (ICAT). IEEE. DOI:10.1109/icat.
2013.6684076.

Cantrell R, Schermerhorn P and Scheutz M (2011) Learning actions
from human-robot dialogues. In: 2011 RO-MAN. IEEE. DOI:
10.1109/roman.2011.6005199.

Cao L, Liu Z and Huang TS (2010) Cross-dataset action detection.
In: Computer vision and pattern recognition (CVPR),
2010 IEEE conference on. IEEE, pp. 1998–2005. URL
http://research.microsoft.com/en-us/um/

people/zliu/actionrecorsrc/default.htm.
Chaaraoui AA, Climent-Pérez P and Flórez-Revuelta F (2012) An

efficient approach for multi-view human action recognition
based on bag-of-key-poses. In: Human Behavior Understand-
ing. Springer Berlin Heidelberg, pp. 29–40. DOI:10.1007/
978-3-642-34014-7_3.

Chaquet JM, Carmona EJ and Fernández-Caballero A (2013)
A survey of video datasets for human action and activity
recognition. Computer Vision and Image Understanding

Prepared using sagej.cls

https://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
https://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/default.htm
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/default.htm


24 Journal Title XX(X)

117(6): 633–659.
Chella A, Frixione M and Gaglio S (2000) Towards a conceptual

representation of actions. Springer Berlin Heidelberg, pp. 333–
344. DOI:10.1007/3-540-46238-4_29.

Chen L, Wei H and Ferryman J (2014) ReadingAct RGB-d action
dataset and human action recognition from local features.
Pattern Recognition Letters 50: 159–169. DOI:10.1016/j.
patrec.2013.09.004.

Chuang LW, Lin CY and Cangelosi A (2012) Learning of
composite actions and visual categories via grounded linguistic
instructions: Humanoid robot simulations. In: The 2012
International Joint Conference on Neural Networks (IJCNN).
IEEE. DOI:10.1109/ijcnn.2012.6252520.

Cisek P and Kalaska JF (2010) Neural Mechanisms for Interacting
with a World Full of Action Choices. Annual Review of
Neuroscience 33(1): 269–298.

Claßen J, Röger G, Lakemeyer G and Nebel B (2011) Platas—
integrating planning and the action language golog. KI
- Künstliche Intelligenz 26(1): 61–67. DOI:10.1007/
s13218-011-0155-2.

CMU (2003) Graphics lab motion capture. URL http://

mocap.cs.cmu.edu/. Contact: jkh+mocap@cs.cmu.edu.
Cooper RP and Shallice T (2006) Hierarchical schemas and goals

in the control of sequential behavior. .
Davidson D (2001) Essays on Actions and Events: Philosophical

Essays. Clarendon Press.
De Kleijn R, Kachergis G and Hommel B (2014) Everyday robotic

action: Lessons from human action control. Frontiers in
Neurorobotics 8: 1–9. ECollection.

Desmurget M and Grafton S (2000) Forward modeling allows
feedback control for fast reaching movements. Trends in
Cognitive Sciences 4(11): 423 – 431. DOI:https://doi.org/10.
1016/S1364-6613(00)01537-0.

Dindo H and Chella A (2013) What will you do next? a
cognitive model for understanding others’ intentions based
on shared representations. In: Virtual Augmented and Mixed
Reality. Designing and Developing Augmented and Virtual
Environments. Springer Berlin Heidelberg, pp. 253–266. DOI:
10.1007/978-3-642-39405-8_29.

Dindo H, Presti LL, Cascia ML, Chella A and Dedić R
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