
U. Priss, D. Corbett, and G. Angelova (Eds.): ICCS 2002, LNAI 2393, pp. 250-260, 2002.
 Springer-Verlag Berlin Heidelberg 2002

A First Step toward the Knowledge Web:
Interoperability Issues among

Conceptual Graph Based Software Agents
Part I

Guy W. Mineau

Dept. of Computer Science, University Laval
Quebec City, Quebec, Canada, G1K 7P4

Tel: (418) 656-5189, Fax: (418) 656-2324
Mineau@ift.ulaval.ca

Abstract. As soon as Web documents embed knowledge in a format
processable by computers, it is expected that knowledge-based services
will be offered on-line, through the Web. These applications will query
the Web to seek the information relevant to their task. Knowledge
providers will host that knowledge and will make it available to these
various applications. Agent technology is probably best suited to
implement knowledge servers. This paper sketches how conceptual
graphs (CG) based software agents could play the role of knowledge
providers; as an example, it uses a situation where some agent must
answer a query sent by some other agent. In doing so, this paper shows
how interoperability problems between communicating conceptual
graph based systems can be detected automatically. It also shows how
semantic constraints can be used to implement semantic filters, filters
required to control, on a semantic level, the information that is
exchanged between communicating systems.

1 Introduction

Though the semantic Web seems to be quite an endeavor at the moment, one can
already glance at the future beyond the semantic Web, when users and their
applications will interconnect to a web of information-based service providers rather
than to a web of document providers. Nodes in this Web will respond to queries on an
information need basis rather than on a fetch (or ftp) command-like interaction as is
done today through the identification of potentially interesting documents (Web
pages), either directly through a Web browser or indirectly through a Web search
engine. These nodes will act as knowledge providers rather than document providers,
and will allow the first generation of the knowledge Web to be born. The knowledge
Web will provide remote applications with the knowledge they require in order to
carry out their tasks; it will offer real information-based services to the various

A First Step toward the Knowledge Web 251

software applications that will query it. Applications will rely on this library of
accessible information-based services; they will be designed as collaborating software
agents. This software reuse based design will surely decrease software development
costs but will: a) increase testing costs, b) turn distributed applications into
probabilistic applications where the probability of failure due to a non collaborating
agent will most certainly be non negligible, and c) will require that time-sensitive
applications be reengineered so that communication and collaboration time do not
prevent them from providing timely services. Nevertheless, as telecommunication and
computer hardware never stops to provide additional speed to software applications,
and as on-line software brokerage repositories are part of a major effort of the
industry to provide distributed software services over the Web [1], it is foreseeable
that there will be both a need and an opportunity to design knowledge servers in a
near future, as we already strive for the knowledge Web.

Toward that goal, Section 2 of this paper proposes conceptual graph-based
software agents with regard to the task of query answering in such a setting. Then in
Section 3 it presents the fundamentals of interoperability issues between CG-based
systems that aim at communicating. In Section 4 it shows how particular
interoperability conditions pertaining to the filtering of data (as identified in Section
3) can be fulfilled. Section 5 concludes by outlining the future directions of research
that we intend to pursue.

2 CG-Based Software Agents as Knowledge Servers

In this paper we define a software agent as: an automated task-oriented piece of
software that has both reactive and proactive capabilities. This entails that it is
somewhat autonomous, that it can perceive a reality and decide to act upon it, that it
can plan in order to get closer to achieving its goal, that it will seek to collaborate
with other agents if it can not achieve its goal on its own, and therefore, that it can
communicate with others.

For the sake of simplicity and to remain focussed on the topic of this paper, let us
define a CG-based agent as being solely a knowledge server, that is, an agent whose
main (and only) task is to provide answers to queries that it receives from other
agents. Of course the spectrum of actions (of services) that an agent could render
could be more elaborate. Such a simple agent could be seen as a CG system reacting
to a query that it receives, deciding whether to answer it or not, and if so, in
compliance with the various interoperability issues that condition the communication
between itself and the agent where the query originated. Of course, its knowledge is
contained in a CG knowledge base described, as usual, by a canon, which provides
the fundamental elements: a set of partially ordered types T, a set of object
representatives I (which could be either constants or variables), a conformance
relation between types and object representatives C : T x I → {false, true}, and a set
of semantic constraints H1, all needed to restrict the universe of discourse to valid

1 The reader should notice that H is based on the work of [2] and includes the canonical basis

B normally defined as part of the canon of a CG system. Therefore, the canon that we
present here is some extension of that of Sowa [3].

252 Guy W. Mineau

formulae, in order to avoid acquiring knowledge that could not be true of any model
since it would violate the semantics of the domain. This tuple : <T,I,C,H> is called
the canon of the system2. Based on the canon, knowledge describing the application
domain can be asserted. We call the set of assertions A. Since A is the set of all
asserted conceptual graphs, it forms the knowledge base accessible to the agent (to the
system).

So each CG-based agent has a knowledge base into which all of its knowledge is
stored. Of course, especially when modeling modalities or hypothetical worlds (as
done when an agent builds a model of each agent with which it interacts), some form
of memory segmentation/structuring may be required. We proposed such a structuring
in [5] based on our previous work on contexts [6], but this clearly falls outside the
scope of this paper. In brief, the knowledge base of an agent a1, represented as a CG
system, can be symbolized as KB1 = <T1,I1,C1,H1,A1>. Agent a1 will search KB1 each
time it decides to answer some query. Similarly, the query q emanates from an agent
a2 whose knowledge base KB2 may be symbolized as <T2,I2,C2,H2,A2>, with q being
a graph that belongs to the universe of discourse of agent a2. Figure 1 sketches a
situation where CG-based agents would be available on the Web.

Fig. 1. The backbone of the knowledge Web

For any asserted conceptual graph g, and for KBi = <Ti,Ii,Ci,Hi,Ai>, let us define
functions: a) typei : Ai → P(Ti) as the set of partially ordered types in Ti used in g,
along with all generalizations and specializations of all types used in g (according to
Ti)3,4, b) refi : Ai → P(Ii) as the set of referents in Ii (constants and variables) used in
g, c) confi : Ai → C', where C' is the subrelation of Ci defined over typei(g) x refi(g)
only, and d) consi : Ai → P(Hi) as a set of constraints in Hi to which g conforms,
written consi(g)::g. Hopefully, Hi::g ∀g∈Ai, if KBi is to be consistent. With these
definitions, we can define the context of any graph g with regard to KBi as: <typei(g),
refi(g), confi(g), consi(g)>, whether g ∈ Ai or not.

2 For a formal definition of a canon, please refer to [4].
3 Here we use the notation P(S) to denote the partition set of any set S.
4 We also assume that the typei function is order preserving, that is, the partial order of

generality/specificity in Ti is preserved for all elements of P(Ti).

A First Step toward the Knowledge Web 253

In order to interpret a query q emanating from agent a2, a1 will need to be provided
with the context of q with regard to KB2 (where it originated): <type2(q), ref2(q),
conf2(q), cons2(q)>, and will compute the context of q with regard to KB1: <type1(q),
ref1(q), conf1(q), cons1(q)>. The comparison of these two contexts will determine the
level of interoperability between these two agents with regard to answering query q.
This minimalist information interchange approach in which interoperability between
agents intervene, is sketched in Figure 2 below and is the subject of the next two
sections.

Fig. 2. Piece-by-piece communication between agents

3 Computing Interoperability between CG-Based Systems

As presented bye Sowa in [13], the interoperability between communicating systems
is much more than agreeing on some common representation standard, but goes
deeper into the semantic representation of knowledge. In terms of CG-based systems,
interoperability between two knowledge sources a1 and a2 depends on the
compatibility between their individual canon. Compatibility may be partial, and thus,
that is why we aim at maximizing its chances of success by computing it for every
new query sent from a2 to a1, therefore between a context and a canon5. Compatibility
between canons or contexts renders four types of compatibility assessments, one for
each component of a context (or canon).

3.1 Compatibility of Types

In CG based systems, T1 and T2 represent partially ordered vocabularies. In the
literature, the term ontologies is often used. Whether a1 and a2 are able to negotiate,
use or infer the same (or partial) ontology is a rather difficult subject since it refers
directly to the semantics of an application domain. Computing the compatibility
between T1 and T2 is in itself a large endeavor since they may partially overlap. The
smallest overlap of interest for the task at hand, i.e., to answer query q, is the one

5 Of course a high volume of communication between a1 and a2 would entail computing their

compatibility between their entire canons.

254 Guy W. Mineau

between type2(q) and T1. Hopefully, if type2(q) = type1(q), then at least all the types6

in q are covered by an equivalent term in T1. The only worry is with the semantics of
these terms. Under a single name assumption7 over T* = T1 ∪ T2, the types in q can
be interpreted by a1 without loss of meaning. To ensure that this is the case however,
this assumption implies that some type compatibility resolution mechanism was
carried out at some earlier stage. For instance, using predetermined (shared)
ontologies (like WordNet [14]) as a basis for term selection between communicating
agents makes that assumption. We leave to others this work on common ontology
building; we believe that some imperatives of the market place, especially for
business and government related applications, will force individual ontologies to be
built and to be made available to their target users (probably at low cost). In what
follows we assume that such a library of ontologies is commonly available, or that
ontology mapping techniques are available within each agent to determine its level of
compatibility with regard to the interpretation of some (partially) foreign vocabulary.
We do not wish to address that very important issue for now, and leave other
researchers tackle it; we chose to focus the bulk of our work on the other aspects of
compatibility computation between CG-based agents.

3.2 Compatibility between Object Sets

The set of referents ref2(q) contains both constants and variables. In order to answer
query q, a1 must know all constant objects of ref2(q); so all constant objects in ref2(q)
must appear in ref1(q). If not, then I1 (and therefore ref1(q)) must be extended to
include these objects. Naturally one must make sure that no object ends up being
named by two different constants; thus we assume here again a single name
assumption for objects. This may entail the need for a (duplicate name) conflict
resolution mechanism between a1 (I1) and a2 (I2) as I1 is extended.

And for any variable v in ref2(q), I1 must be extended in order to add a new
variable v' to I1 and to associate it with v (and otherwise avoid an early and not
necessarily appropriate binding of variables8). In summary, compatibility resolution
between object sets entails that in the end ref2(q) = ref1(q), and that it may be
necessary for a1 to extend I1 in order to reach that condition.

6 The reader should note that T includes all types, concept and relation types, and that the

extensional semantics of the CG notation that we use is given in [4], where this is stated in
a formal way.

7 The single name assumption implies that there exists a function name : O → L, where O is
the set of all objects needed either at the data or meta level to describe the application
domain, and L is the set of labels (terms) used by the representation language (syntactical
constructs) to refer to them.

8 Here the later binding operation is seen as external to the compatibility computation
process, since it may vary greatly according to the nature or context of the application
domain.

A First Step toward the Knowledge Web 255

3.3 Compatibility between Object to Type Assignments

At this stage, type2(q) = type1(q) (or there is a satisfactory mapping from type2(q) into
type1(q)), and ref2(q) = ref1(q). So the objects of q are known and the vocabulary used
to characterize them can be interpreted by a1. However, it may be the case that agents
a1 and a2 do not share the same viewpoints on the world, and some object in ref2(q)
may not be typed the same way in conf1(q) as in conf2(q), which can be detected
automatically. Let us define t1 ∈ T1 such that object i in ref2(q) conforms to it, written
t1::i, and such that there is no specialization t of t1 in T1 such that t::i. Then type t1 is
said to be the maximally specific characterization of i (in T1). And let t2 be the type
associated with i in q. Under a normal form representation [7], q contains only one
concept representing i, and therefore, we know that t2 is unique. Provided that
type2(q) = type1(q), we have one of the following cases:

t1 ≤ t2 and the concept representing i in q, [t2:i], can be interpreted as such by a1,
t1 > t2 and the concept representing i must be modified in order for a1 to produce

some answer to q (i.e., concept [t2:i] in q must be changed to [t1:i], if possible9),
t1 and t2 are not comparable and then concept [t2:i] in q is changed to [t3:i] where

t3 is the maximally specific generalization of both t1 and t2, if possible10.
Of course, the generalization step(s) that may be required to answer query q may
produce a query graph whose answer would include more data than originally
expected. Data filtering may be required in order: a) to avoid providing unnecessary
data to a2, and b) to protect secure data of a1 from being accidentally accessed by the
query. Sections 3.4 and 4 below explain how the constraint mechanism described in
[2] can be used to filter out data that either a1 does not want to reveal, or a2 does not
wish to get.

3.4 Compatibility between Query and Constraints

There is usually little need for a1 to know whether cons2(q)::q or not, so cons2(q)
could be set to the empty set (since ∅::g holds, by definition, for any conceptual
graph g). However, in a query answering setting as we described above, it may be
interesting for a2 to identify a set of constraints that the answers to q should be
compliant with. Therefore, cons2(q) may be used for that purpose. This is a way to
filter out answers to q that are not desired by a2. Provided that a2 is willing to give

9 If not possible, that means that this generalization violates some constraint on the relations

that may be attached to [t2:i], and that therefore the relations that can not be attached to
[t2:i] anymore (since it must be rewritten as [t1:i]) must be detached from it. As a result, the
resulting query q� may be a disconnected graph, each connected component being treated
by a1 as an independent query graph.

10 Same as footnote 9 above. The reader will notice that the T and ⊥ elements of Ti are
always part of any typei set, and that therefore typei forms a lattice structure.

256 Guy W. Mineau

that information to a1, the amount of information transferred from a1 to a2 would be
less if a1 applied this filter onto its generated output, and less processing would be
required by a2 in order to answer the query11 than if a2 filtered out the resulting set of
graphs itself. Let us define q* as the set of answers to q (from a1). Then in that case
we would require that ∀q' in q*, cons2(q)::q' holds. Naturally, in order for a1 to
interpret cons2(q), type2(q) must include all types (and their generalizations and
specializations) found in all graphs of cons2(q), and ref1(q) must be extended in the
same way as explained in Section 3.2 above, but using all constants and variables
found in all constraint graphs of cons2(q). Section 4.1 briefly presents how semantic
constraints can be represented under the CG formalism.

Also, in order to avoid giving access to private data when answering a query q, all
graphs that instantiate query q and that encode private data should not be part of q*;
some filter mechanism should be used in order to discard these graphs. Section 4.2
below shows how to represent such a filter mechanism as a set of constraints H
describing what graphs could exist with regard to some outside view of the data, and
what other graphs could not. With that framework, ∀q' in q*, we have that (H ∪
cons2(q))::q' must hold. So all graphs in q* will be computed in light of (H ∪
cons2(q)), an extended set of constraints. That way a1 will not give access to protected
data; and a2 will not receive unwanted information. Section 4 describes how a filter
mechanism can be represented as a set of constraints H to satisfy.

4 Compatibility over Sets of Constraints

First, Section 4.1 reminds the reader of the representation framework introduced in
[2] to model semantic constraints under the CG formalism. Then, Section 4.2
formulates the filter problem as a constraint satisfaction problem, thus allowing the
use of constraints to implement a filter mechanism over queries.

4.1 Semantic Constraints under the CG Formalism

Different proposals exist in the CG literature to represent semantic constraints
[2,8,9,10]. To our opinion, the most complete proposals in terms of their coverage are
[2,9], and we feel that their use in the representation of semantic filters would
probably be equivalent. Being directly involved in [2], we chose to use that
framework to further describe how it could be used to implement filters (Section 4.2).
Therefore this section summarizes in a nutshell our previous work on semantic
constraints.

In [2] we presented two classes of constraints: domain and topological constraints.
Domain constraints are those that restrict the set of values that can instantiate a

11 And this is particularly interesting for applications which dispatch many queries at once and

which may therefore receive many answer sets at the same time, like for example,
broadcast applications deployed on distributed databases and whose primary purpose is to
manage distributed database queries.

A First Step toward the Knowledge Web 257

variable in a generic concept of some graph; topological constraints restrict the set of
graphs that can be asserted. In what follows we concentrate on the latter though both
are needed to fully describe all semantic constraints normally found in database
literature [11].

As the reader probably recalls, the set of all asserted graphs in a CG system forms
a generalization hierarchy. In effect, for any two graphs g1 and g2, either g1 is more
specific than g2, written g1 <g g2, or g1 is more general than g2, written g1 >g g2, or
both are equivalent, written g1 =g g2, or they are incomparable, written g1 ≠g g2. Let
us define G the set of all asserted graphs A in a CG system together with the partial
order relation <g that is inferable between all pairs of graphs in A by the application
of the projection operator π [3]; so G = <A,>g>. Let us define A* as the set of all
derivable graphs from the canon of the system. And let us define G* as <A*,>g>.
Clearly G ⊆ G* since the graphs of A are all derivable from the canon and must also
appear in A*, and since the partial order relation between all pairs of graphs does not
change whether the graphs are in A or A*.

In [2] we defined a semantic constraint c as a subhierarchy Gc ⊆ G*, where all
graphs in Gc, though derivable from the canon, should not be asserted in A in order to
avoid violating constraint c. Gc can be represented in a very compact way; constraint
c identifies the most general graph g in Gc (which we defined as unique) that should
not appear in A even though it is derivable from the canon. Figure 3 illustrates a
constraint that states that: "there is no employee that manages a project to which s/he
is assigned".

Fig. 3. A conceptual graph g used as a constraint

So g should never be asserted in A, and neither should any of its specializations. Gc is
represented by its most general graph g and implicitly by all of g's specializations.
The set of all semantic constraints associated with a domain is called H and is part of
the canon of the system since it restricts the subsequent assertion/derivation of graphs.
Asserting any graph g' in A should be done with respect to H, that is g' will be
asserted into A if it does not fall within Gc, for any c in H. Consequently Gc ⊆ G*, but
A ∩ (the graphs in Gc) = ∅ for all constraints c in H. So one could see that ∪c∈H Gc
as an overlay defined over G*, determining invalid assertion subspaces of the
universe of discourse.

Our work in [2] presents not only constraints, but constraints with exceptions. In
that case Gc does not include all specializations of g, its most general graph, but some
subhierarchies of Gc may be excluded from it by defining exceptions to c. We will not
present that part of our work here but the fundamentals of what we presented in this
section remain true in that case as well. For what follows the reader must only

258 Guy W. Mineau

remember that a set of semantic constraints H defines an overlay over G* the set of all
derivable graphs from the canon, which constrains which graphs can be asserted into
A. Whether H is composed of partial or complete Gcs, representing constraints with
or without exceptions, is not relevant for our current argumentation12.

1.2 Filters as Sets of Constraints

Now that we can see H as an overlay over G*, the set of partially ordered conceptual
graphs derivable from the canon of a CG system, it is straightforward to define its use
in the implementation of semantic filters.

As said in Section 4.1 above, Gc prevents assertions to be made in a specific
subhierarchy of G*, leaving the corresponding part of G empty. By doing that, all
graphs in A conform to H, and the system is said to be consistent with regard to its
constraint set. If some agent wishes to block access to part of its data set, it could
consider these parts (in G) as being empty when seen from the outside world (when
trying to answer a query). Therefore, an agent could define some overlay H' over G*,
then called semantic filter, in the same way its constraint set H is defined, but which
would identify subspaces of G* that should be considered empty when answering
outside queries. For instance, if an agent does not wish to let the outside world know
whether some project manager works on projects to which s/he is assigned, graph g of
Figure 3 could be part of H', defining a subhierarchy of G*, called Gg, that identifies
graphs of A that should not be part of any answer set q*. That way, when answering a
related query q, though there may be graphs in A that would normally instantiate the
query and would be part of q*, the provided answer to the outside world would be Q
= q* \ {g' g' ∈ Gg ∀g∈H'}, where q* is the set of all graphs in A which embed some
projection of q13.

As the computation of Q above shows, our model deletes from the answer set, all
graphs that contain part of some private data, instead of cutting out the parts that
should not be seen by the outside world. This choice was made in order to avoid data
reconstruction from external agents that would send sequences of overlapping queries,
and that, with some inference mechanism, could guess with a high probability, what
the missing pieces could be.

In a world where communication with the outside world allows for various security
level clearances, it would be desirable to have semantic filters that are custom made.
That is, depending on the origin of a query, a different filter would be used, providing
different views over the same data set. These views are in fact interfaces between
communicating agents. Figure 4 shows the schema of Figure 1 updated accordingly.
Such an architecture is directly related to the modeling of the different agents with
which an agent interacts, and will be discussed in a forth-coming paper.

12 In [4] we present the extensional semantics of the CG notation, including that of semantic

constraints. The interested reader should refer to it.
13 Of course this filtering out of graphs from q* need not be done after q* is computed, but can

be embedded in the evaluation of q* itself. In fact, by using the elements of H' to determine
the subspaces where the answer to q could lie, a gain in performance could be achieved as
noted in [12]. The precise evaluation of this gain is yet to be done.

A First Step toward the Knowledge Web 259

Fig. 4. The communication of agents through external views over available data sets

5 Conclusion and Future Directions

As the semantic Web will eventually offer structured knowledge within Web
documents, the next stage of development for the Web will be to offer knowledge-
oriented services altogether, giving birth to the knowledge Web. Therefore, there will
be a need for knowledge providers (and eventually for knowledge brokers) available
on-line, answering the various requests coming to them from every part of the Web.
Agent technology will probably be best suited to implement such knowledge
providers. We see the CG formalism as the representation language for describing
these agents because it is flexible, very expressive, formally defined, and easy to learn
and use (mainly because of its graphical nature and its closeness to the UML and ER
modeling languages).

Toward that goal, this paper discusses some issues regarding the interoperability of
CG-based systems in the light of a single problem: the answering of a query q by an
agent a1, sent by some other agent a2. It defines the notion of a context of a graph,
which is the subset of a canon upon which the graph is based. It proposes to establish
a mapping between two contexts of the same graph, one being the context of the
graph in the source domain, the other one, the context of the graph in the target
domain, and shows how agent a1 can detect what are its shortcomings with regard to
the interpretation of query q, in a totally automatic manner. Based on this
information, it is assumed that some resolution mechanism could be triggered if
needed.

As the main trend in the literature today with regard to this resolution mechanism
is centered around the establishment of a common ontology, we chose to rather
discuss the handling of semantic constraints in the process of answering query q. For
that purpose, this paper proposes to use a simple overlay mechanism, based on the
representation of semantic constraints as presented in [2], in order to implement
semantic filters required to control, on a semantic level, the information that is
exchanged between communicating agents. It is easy to see that communication
interfaces between agents could provide for different security clearance levels.

Now that we have established what is required of CG-based systems in order for
them to be interoperable, and that we have proposed a model to compute the

260 Guy W. Mineau

interoperability level between communicating agents, we will focus our attention on
providing algorithms that will help knowledge engineers negotiate a common context
for a query graph and its answer set. We foresee that abduction and probabilistic
reasoning techniques will be part of the solution, as tentative mappings between
contexts will be proposed and eventually revised as more graphs are exchanged
between agents. By defining a model of interoperability computation between CG-
based communicating agents, this paper laid down the ground work needed to bridge
the gap between various knowledge centered applications (knowledge providers,
brokers, users) on the Web, which is absolutely required to eventually implement the
knowledge Web.

References
1. Edwards, K.W., (1999). Core jini. Prentice Hall.
2. Mineau, G.W. & Missaoui, R., (1997). The Representation of Semantic

Constraints in CG Systems. Conceptual Structures: Lecture Notes in Artificial
Intelligence, vol. 1257. Springer-Verlag. 138-152.

3. Sowa, J. F., (1984). Conceptual Structures: Information Processing in Mind and
Machine. Addison-Wesley.

4. Mineau, G.W., (2000). The Extensional Semantics of the Conceptual Graph
Formalism. Lecture Notes in AI, vol. 1867. Springer-Verlag. 221-234.

5. Mineau, G.W., (1999). Constraints on Processes: Essential Elements for the
Validation and Execution of Processes. Lecture Notes in Artificial Intelligence,
vol. 1640. Springer-Verlag. 66-82.

6. Mineau, G.W. & Gerbé, O., (1997). Contexts: A Formal Definition of Worlds of
Assertions. Lecture Notes in Artificial Intelligence, vol. 1257. Springer-Verlag.
80-94.

7. Chein, M. & Mugnier, M.L., (1993). Specialization: Where Do the Difficulties
Occur? Lecture Notes in Artificial Intelligence, vol. 754. Springer-Verlag. 229-
238.

8. Dibie-Barthélemy, J., Haemmerlé, O. & Loiseau, S., (1998). Refinement of
Conceptual Graphs. Lecture Notes in Artificial Intelligence, vol. 2120. Springer-
Verlag. 216-230.

9. Dibie, J., (1998). A Semantic Validation of Conceptual Graphs. Lecture Notes in
Artificial Intelligence, vol. 1453. Springer-Verlag. 80-93.

10. Pfeiffer, H.D. & Hartley, R.T., (1992). Temporal, spatial, and constraint handling
in the Conceptual Programming environment, CP. Journal of Experimental &
Theoretical Artificial Intelligence; 4(2). 167-183.

11. Elmasri, R. & Navathe, S.B., (1994). Fundamentals of Database Systems. 2nd

edition. Benjamin Cummings.
12. Levinson, R. A. & Ellis, G., (1992). Multi-level hierarchical retrieval. Knowledge

Based Systems, 5(3). 233-244.
13. Sowa, J. F., (2002). Negotiation Instead of Legislation. Available at:

www.jfsowa.com/talks/ negotiat.htm.
14. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D. & Miller, K.J., (1990).

Introduction to WordNet: an on-line lexical database. Int. Journal of
Lexicography, Vol.3, No 4, 235-244.

	Introduction
	CG-Based Software Agents as Knowledge Servers
	Computing Interoperability between CG-Based Systems
	Compatibility of Types
	Compatibility between Object Sets
	Compatibility between Object to Type Assignments
	Compatibility between Query and Constraints

	Compatibility over Sets of Constraints
	Semantic Constraints under the CG Formalism
	Filters as Sets of Constraints

	Conclusion and Future Directions
	References

